Cargando…
Postoperative complications following colectomy for ulcerative colitis: A validation study
BACKGROUND: Ulcerative colitis (UC) patients failing medical management require colectomy. This study compares risk estimates for predictors of postoperative complication derived from administrative data against that of chart review and evaluates the accuracy of administrative coding for this popula...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432603/ https://www.ncbi.nlm.nih.gov/pubmed/22943760 http://dx.doi.org/10.1186/1471-230X-12-39 |
Sumario: | BACKGROUND: Ulcerative colitis (UC) patients failing medical management require colectomy. This study compares risk estimates for predictors of postoperative complication derived from administrative data against that of chart review and evaluates the accuracy of administrative coding for this population. METHODS: Hospital administrative databases were used to identify adults with UC undergoing colectomy from 1996–2007. Medical charts were reviewed and regression analyses comparing chart versus administrative data were performed to assess the effect of age, emergent operation, and Charlson comorbidities on the occurrence of postoperative complications. Sensitivity, specificity, and positive/negative predictive values of administrative coding for identifying the study population, Charlson comorbidities, and postoperative complications were assessed. RESULTS: Compared to chart review, administrative data estimated a higher magnitude of effect for emergent admission (OR 2.52 [95% CI: 1.80–3.52] versus 1.49 [1.06–2.09]) and Charlson comorbidities (OR 2.91 [1.86–4.56] versus 1.50 [1.05–2.15]) as predictors of postoperative complications. Administrative data correctly identified UC and colectomy in 85.9% of cases. The administrative database was 37% sensitive in identifying patients with ≥ 1Charlson comorbidity. Restricting analysis to active comorbidities increased the sensitivity to 63%. The sensitivity of identifying patients with at least one postoperative complication was 68%; restricting analysis to more severe complications improved the sensitivity to 84%. CONCLUSIONS: Administrative data identified the same risk factors for postoperative complications as chart review, but overestimated the magnitude of risk. This discrepancy may be explained by coding inaccuracies that selectively identifying the most serious complications and comorbidities. |
---|