Cargando…

γ-Tubulin plays a key role in inactivating APC/C(Cdh1) at the G(1)–S boundary

A γ-tubulin mutation in Aspergillus nidulans, mipA-D159, causes failure of inactivation of the anaphase-promoting complex/cyclosome (APC/C) in interphase, resulting in failure of cyclin B (CB) accumulation and removal of nuclei from the cell cycle. We have investigated the role of CdhA, the A. nidul...

Descripción completa

Detalles Bibliográficos
Autores principales: Edgerton-Morgan, Heather, Oakley, Berl R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432763/
https://www.ncbi.nlm.nih.gov/pubmed/22927465
http://dx.doi.org/10.1083/jcb.201203115
Descripción
Sumario:A γ-tubulin mutation in Aspergillus nidulans, mipA-D159, causes failure of inactivation of the anaphase-promoting complex/cyclosome (APC/C) in interphase, resulting in failure of cyclin B (CB) accumulation and removal of nuclei from the cell cycle. We have investigated the role of CdhA, the A. nidulans homologue of the APC/C activator protein Cdh1, in γ-tubulin–dependent inactivation of the APC/C. CdhA was not essential, but it targeted CB for destruction in G(1), and APC/C(CdhA) had to be inactivated for the G(1)–S transition. mipA-D159 altered the localization pattern of CdhA, and deletion of the gene encoding CdhA allowed CB to accumulate in all nuclei in strains carrying mipA-D159. These data indicate that mipA-D159 causes a failure of inactivation of APC/C(CdhA) at G(1)–S, perhaps by altering its localization to the spindle pole body, and, thus, that γ-tubulin plays an important role in inactivating APC/C(CdhA) at this point in the cell cycle.