Cargando…
Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy
An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432826/ https://www.ncbi.nlm.nih.gov/pubmed/22962534 http://dx.doi.org/10.3164/jcbn.11-33 |
_version_ | 1782242251289657344 |
---|---|
author | Lai, Ying-Ling Aoyama, Sae Ohata, Miyuki Otsuka, Nami Shiokawa, Hidemi Tomono, Susumu Fujiwara, Yukio Kanazawa, Hiroaki Miyoshi, Noriyuki Ohshima, Hiroshi |
author_facet | Lai, Ying-Ling Aoyama, Sae Ohata, Miyuki Otsuka, Nami Shiokawa, Hidemi Tomono, Susumu Fujiwara, Yukio Kanazawa, Hiroaki Miyoshi, Noriyuki Ohshima, Hiroshi |
author_sort | Lai, Ying-Ling |
collection | PubMed |
description | An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuka Long-Evans Tokushima Fatty rats. Ten-week old Otsuka Long-Evans Tokushima Fatty (n = 40) and control Long-Evans Tokushima Otsuka rats (n = 20) were given drinking water containing 20% sucrose to accelerate the development of diabetic nephropathy. Otsuka Long-Evans Tokushima Fatty rats developed diabetic nephropathy in an age-dependent manner. Renal nitric oxide synthase activities in Otsuka Long-Evans Tokushima Fatty rats gradually declined with the progression of diabetic mellitus and were significantly lower than those of age-matched Long-Evans Tokushima Otsuka rats after 22 weeks of age. The lower activities of renal nitric oxide synthase in Otsuka Long-Evans Tokushima Fatty rats were correlated with relatively higher levels of renal free asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, and were also correlated with decreased activities of dimethylargininedimethylaminohydrolase which metabolizes asymmetric dimethylarginine to citrulline. These results imply that dimethylargininedimethylaminohydrolase dysregulation may play an important role in the development of diabetic nephropathy by increasing asymmetric dimethylarginine levels, which leads to inhibition of renal nitric oxide synthesis. |
format | Online Article Text |
id | pubmed-3432826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | the Society for Free Radical Research Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-34328262012-09-07 Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy Lai, Ying-Ling Aoyama, Sae Ohata, Miyuki Otsuka, Nami Shiokawa, Hidemi Tomono, Susumu Fujiwara, Yukio Kanazawa, Hiroaki Miyoshi, Noriyuki Ohshima, Hiroshi J Clin Biochem Nutr Original Article An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuka Long-Evans Tokushima Fatty rats. Ten-week old Otsuka Long-Evans Tokushima Fatty (n = 40) and control Long-Evans Tokushima Otsuka rats (n = 20) were given drinking water containing 20% sucrose to accelerate the development of diabetic nephropathy. Otsuka Long-Evans Tokushima Fatty rats developed diabetic nephropathy in an age-dependent manner. Renal nitric oxide synthase activities in Otsuka Long-Evans Tokushima Fatty rats gradually declined with the progression of diabetic mellitus and were significantly lower than those of age-matched Long-Evans Tokushima Otsuka rats after 22 weeks of age. The lower activities of renal nitric oxide synthase in Otsuka Long-Evans Tokushima Fatty rats were correlated with relatively higher levels of renal free asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, and were also correlated with decreased activities of dimethylargininedimethylaminohydrolase which metabolizes asymmetric dimethylarginine to citrulline. These results imply that dimethylargininedimethylaminohydrolase dysregulation may play an important role in the development of diabetic nephropathy by increasing asymmetric dimethylarginine levels, which leads to inhibition of renal nitric oxide synthesis. the Society for Free Radical Research Japan 2012-09 2012-06-08 /pmc/articles/PMC3432826/ /pubmed/22962534 http://dx.doi.org/10.3164/jcbn.11-33 Text en Copyright © 2012 JCBN This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Lai, Ying-Ling Aoyama, Sae Ohata, Miyuki Otsuka, Nami Shiokawa, Hidemi Tomono, Susumu Fujiwara, Yukio Kanazawa, Hiroaki Miyoshi, Noriyuki Ohshima, Hiroshi Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title | Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title_full | Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title_fullStr | Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title_full_unstemmed | Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title_short | Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy |
title_sort | dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type ii diabetic nephropathy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432826/ https://www.ncbi.nlm.nih.gov/pubmed/22962534 http://dx.doi.org/10.3164/jcbn.11-33 |
work_keys_str_mv | AT laiyingling dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT aoyamasae dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT ohatamiyuki dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT otsukanami dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT shiokawahidemi dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT tomonosusumu dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT fujiwarayukio dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT kanazawahiroaki dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT miyoshinoriyuki dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy AT ohshimahiroshi dysregulationofdimethylargininedimethylaminohydrolaseasymmetricdimethylargininepathwayinrattypeiidiabeticnephropathy |