Cargando…

Towards coherent spin precession in pure-spin current

Non-local spin injection in lateral spin valves generates a pure spin current which is a diffusive flow of spins (i.e. spin angular momentums) with no net charge flow. The diffusive spins lose phase coherency in precession while undergoing frequent collisions and these events lead to a broad distrib...

Descripción completa

Detalles Bibliográficos
Autores principales: Idzuchi, Hiroshi, Fukuma, Yasuhiro, Otani, YoshiChika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432863/
https://www.ncbi.nlm.nih.gov/pubmed/22953049
http://dx.doi.org/10.1038/srep00628
Descripción
Sumario:Non-local spin injection in lateral spin valves generates a pure spin current which is a diffusive flow of spins (i.e. spin angular momentums) with no net charge flow. The diffusive spins lose phase coherency in precession while undergoing frequent collisions and these events lead to a broad distribution of the dwell time in a transport channel between the injector and the detector. Here we show the lateral spin-valves with dual injectors enable us to detect a genuine in-plane precession signal from the Hanle effect, demonstrating the phase coherency in the in-plane precession is improved with an increase of the channel length. The coherency in the spin precession shows a universal behavior as a function of the normalized separation between the injector and the detector in material-independent fashion for metals and semiconductors including graphene.