Cargando…
An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC
Infection is the leading complication associated with intravascular devices, and these infections develop when a catheter becomes colonized by microorganisms. To combat this issue, medical device manufacturers seek to provide healthcare facilities with antimicrobial medical devices to prevent or red...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433224/ https://www.ncbi.nlm.nih.gov/pubmed/22969275 http://dx.doi.org/10.1155/2012/921617 |
_version_ | 1782242287599747072 |
---|---|
author | Allan, Nicholas D. Giare-Patel, Kamna Olson, Merle E. |
author_facet | Allan, Nicholas D. Giare-Patel, Kamna Olson, Merle E. |
author_sort | Allan, Nicholas D. |
collection | PubMed |
description | Infection is the leading complication associated with intravascular devices, and these infections develop when a catheter becomes colonized by microorganisms. To combat this issue, medical device manufacturers seek to provide healthcare facilities with antimicrobial medical devices to prevent or reduce the colonization. In order to adequately evaluate these devices, an in vivo model is required to accurately assess the performance of the antimicrobial devices in a clinical setting. The model presented herein was designed to provide a simulation of the subcutaneous tunnel environment to evaluate the ability of an antimicrobial peripherally inserted central catheter (PICC), coated with chlorhexidine based technology, to reduce microbial migration and colonization compared to an uncoated PICC. Three samples of control, uncoated PICCs and three samples of coated PICCs were surgically tunneled into the backs of female New Zealand White rabbits. The insertion sites were then challenged with Staphylococcus aureus at the time of implantation. Animals were evaluated out to thirty days and sacrificed. Complete en bloc dissection and evaluation of the catheter and surrounding tissue demonstrated that the chlorhexidine coated catheter was able to significantly reduce microbial colonization and prevent microbial migration as compared to the standard, un-treated catheter. |
format | Online Article Text |
id | pubmed-3433224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-34332242012-09-11 An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC Allan, Nicholas D. Giare-Patel, Kamna Olson, Merle E. J Biomed Biotechnol Research Article Infection is the leading complication associated with intravascular devices, and these infections develop when a catheter becomes colonized by microorganisms. To combat this issue, medical device manufacturers seek to provide healthcare facilities with antimicrobial medical devices to prevent or reduce the colonization. In order to adequately evaluate these devices, an in vivo model is required to accurately assess the performance of the antimicrobial devices in a clinical setting. The model presented herein was designed to provide a simulation of the subcutaneous tunnel environment to evaluate the ability of an antimicrobial peripherally inserted central catheter (PICC), coated with chlorhexidine based technology, to reduce microbial migration and colonization compared to an uncoated PICC. Three samples of control, uncoated PICCs and three samples of coated PICCs were surgically tunneled into the backs of female New Zealand White rabbits. The insertion sites were then challenged with Staphylococcus aureus at the time of implantation. Animals were evaluated out to thirty days and sacrificed. Complete en bloc dissection and evaluation of the catheter and surrounding tissue demonstrated that the chlorhexidine coated catheter was able to significantly reduce microbial colonization and prevent microbial migration as compared to the standard, un-treated catheter. Hindawi Publishing Corporation 2012 2012-08-26 /pmc/articles/PMC3433224/ /pubmed/22969275 http://dx.doi.org/10.1155/2012/921617 Text en Copyright © 2012 Nicholas D. Allan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Allan, Nicholas D. Giare-Patel, Kamna Olson, Merle E. An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title | An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title_full | An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title_fullStr | An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title_full_unstemmed | An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title_short | An In Vivo Rabbit Model for the Evaluation of Antimicrobial Peripherally Inserted Central Catheter to Reduce Microbial Migration and Colonization as Compared to an Uncoated PICC |
title_sort | in vivo rabbit model for the evaluation of antimicrobial peripherally inserted central catheter to reduce microbial migration and colonization as compared to an uncoated picc |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433224/ https://www.ncbi.nlm.nih.gov/pubmed/22969275 http://dx.doi.org/10.1155/2012/921617 |
work_keys_str_mv | AT allannicholasd aninvivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc AT giarepatelkamna aninvivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc AT olsonmerlee aninvivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc AT allannicholasd invivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc AT giarepatelkamna invivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc AT olsonmerlee invivorabbitmodelfortheevaluationofantimicrobialperipherallyinsertedcentralcathetertoreducemicrobialmigrationandcolonizationascomparedtoanuncoatedpicc |