Cargando…
Interaction between submicron COD crystals and renal epithelial cells
OBJECTIVES: This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD) with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells) before and after damage, and to discuss the mechanism of kidney stone formation. METHODS:...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433325/ https://www.ncbi.nlm.nih.gov/pubmed/22973095 http://dx.doi.org/10.2147/IJN.S33848 |
_version_ | 1782242297507741696 |
---|---|
author | Peng, Hua Ouyang, Jian-Ming Yao, Xiu-Qiong Yang, Ru-E |
author_facet | Peng, Hua Ouyang, Jian-Ming Yao, Xiu-Qiong Yang, Ru-E |
author_sort | Peng, Hua |
collection | PubMed |
description | OBJECTIVES: This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD) with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells) before and after damage, and to discuss the mechanism of kidney stone formation. METHODS: Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero–COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process. RESULTS: The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals. CONCLUSION: Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial cells plays an important role in the formation of early-stage kidney stones. |
format | Online Article Text |
id | pubmed-3433325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34333252012-09-12 Interaction between submicron COD crystals and renal epithelial cells Peng, Hua Ouyang, Jian-Ming Yao, Xiu-Qiong Yang, Ru-E Int J Nanomedicine Original Research OBJECTIVES: This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD) with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells) before and after damage, and to discuss the mechanism of kidney stone formation. METHODS: Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero–COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process. RESULTS: The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals. CONCLUSION: Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial cells plays an important role in the formation of early-stage kidney stones. Dove Medical Press 2012 2012-08-29 /pmc/articles/PMC3433325/ /pubmed/22973095 http://dx.doi.org/10.2147/IJN.S33848 Text en © 2012 Peng et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Peng, Hua Ouyang, Jian-Ming Yao, Xiu-Qiong Yang, Ru-E Interaction between submicron COD crystals and renal epithelial cells |
title | Interaction between submicron COD crystals and renal epithelial cells |
title_full | Interaction between submicron COD crystals and renal epithelial cells |
title_fullStr | Interaction between submicron COD crystals and renal epithelial cells |
title_full_unstemmed | Interaction between submicron COD crystals and renal epithelial cells |
title_short | Interaction between submicron COD crystals and renal epithelial cells |
title_sort | interaction between submicron cod crystals and renal epithelial cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433325/ https://www.ncbi.nlm.nih.gov/pubmed/22973095 http://dx.doi.org/10.2147/IJN.S33848 |
work_keys_str_mv | AT penghua interactionbetweensubmicroncodcrystalsandrenalepithelialcells AT ouyangjianming interactionbetweensubmicroncodcrystalsandrenalepithelialcells AT yaoxiuqiong interactionbetweensubmicroncodcrystalsandrenalepithelialcells AT yangrue interactionbetweensubmicroncodcrystalsandrenalepithelialcells |