Cargando…
Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria
Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433467/ https://www.ncbi.nlm.nih.gov/pubmed/22962579 http://dx.doi.org/10.1371/journal.pone.0041879 |
_version_ | 1782242327855628288 |
---|---|
author | Tian, Xiaoli Xu, Feng Lung, Wing Yi Meyerson, Cherise Ghaffari, Amir Ali Cheng, Genhong Deng, Jane C. |
author_facet | Tian, Xiaoli Xu, Feng Lung, Wing Yi Meyerson, Cherise Ghaffari, Amir Ali Cheng, Genhong Deng, Jane C. |
author_sort | Tian, Xiaoli |
collection | PubMed |
description | Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host defense. Here, we sought to determine whether the induction of an “antiviral” immune state using various viral recognition receptor ligands was sufficient to result in decreased ability to combat common bacterial pathogens of the lung. Using a mouse model, animals were administered polyinosine-polycytidylic acid (poly I:C) or Toll-like 7 ligand (imiquimod or gardiquimod) intranasally, followed by intratracheal challenge with Streptococcus pneumoniae. We found that animals pre-exposed to poly I:C displayed impaired bacterial clearance and increased mortality. Poly I:C-exposed animals also had decreased ability to clear methicillin-resistant Staphylococcus aureus. Furthermore, we showed that activation of Toll-like receptor (TLR)3 and Retinoic acid inducible gene (RIG-I)/Cardif pathways, which recognize viral nucleic acids in the form of dsRNA, both contribute to poly I:C mediated impairment of bacterial clearance. Finally, we determined that poly I:C administration resulted in significant induction of type I interferons (IFNs), whereas the elimination of type I IFN signaling improved clearance and survival following secondary bacterial pneumonia. Collectively, these results indicate that in the lung, poly I:C administration is sufficient to impair pulmonary host defense against clinically important gram-positive bacterial pathogens, which appears to be mediated by type I IFNs. |
format | Online Article Text |
id | pubmed-3433467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34334672012-09-07 Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria Tian, Xiaoli Xu, Feng Lung, Wing Yi Meyerson, Cherise Ghaffari, Amir Ali Cheng, Genhong Deng, Jane C. PLoS One Research Article Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host defense. Here, we sought to determine whether the induction of an “antiviral” immune state using various viral recognition receptor ligands was sufficient to result in decreased ability to combat common bacterial pathogens of the lung. Using a mouse model, animals were administered polyinosine-polycytidylic acid (poly I:C) or Toll-like 7 ligand (imiquimod or gardiquimod) intranasally, followed by intratracheal challenge with Streptococcus pneumoniae. We found that animals pre-exposed to poly I:C displayed impaired bacterial clearance and increased mortality. Poly I:C-exposed animals also had decreased ability to clear methicillin-resistant Staphylococcus aureus. Furthermore, we showed that activation of Toll-like receptor (TLR)3 and Retinoic acid inducible gene (RIG-I)/Cardif pathways, which recognize viral nucleic acids in the form of dsRNA, both contribute to poly I:C mediated impairment of bacterial clearance. Finally, we determined that poly I:C administration resulted in significant induction of type I interferons (IFNs), whereas the elimination of type I IFN signaling improved clearance and survival following secondary bacterial pneumonia. Collectively, these results indicate that in the lung, poly I:C administration is sufficient to impair pulmonary host defense against clinically important gram-positive bacterial pathogens, which appears to be mediated by type I IFNs. Public Library of Science 2012-09-04 /pmc/articles/PMC3433467/ /pubmed/22962579 http://dx.doi.org/10.1371/journal.pone.0041879 Text en © 2012 Tian et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tian, Xiaoli Xu, Feng Lung, Wing Yi Meyerson, Cherise Ghaffari, Amir Ali Cheng, Genhong Deng, Jane C. Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title | Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title_full | Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title_fullStr | Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title_full_unstemmed | Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title_short | Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria |
title_sort | poly i:c enhances susceptibility to secondary pulmonary infections by gram-positive bacteria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433467/ https://www.ncbi.nlm.nih.gov/pubmed/22962579 http://dx.doi.org/10.1371/journal.pone.0041879 |
work_keys_str_mv | AT tianxiaoli polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT xufeng polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT lungwingyi polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT meyersoncherise polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT ghaffariamirali polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT chenggenhong polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria AT dengjanec polyicenhancessusceptibilitytosecondarypulmonaryinfectionsbygrampositivebacteria |