Cargando…
Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex
Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433990/ https://www.ncbi.nlm.nih.gov/pubmed/22957188 http://dx.doi.org/10.1002/ece3.294 |
_version_ | 1782242367020990464 |
---|---|
author | Godbout, Julie Yeh, Francis C Bousquet, Jean |
author_facet | Godbout, Julie Yeh, Francis C Bousquet, Jean |
author_sort | Godbout, Julie |
collection | PubMed |
description | Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization. |
format | Online Article Text |
id | pubmed-3433990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-34339902012-09-06 Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex Godbout, Julie Yeh, Francis C Bousquet, Jean Ecol Evol Original Research Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization. Blackwell Publishing Ltd 2012-08 2012-07-06 /pmc/articles/PMC3433990/ /pubmed/22957188 http://dx.doi.org/10.1002/ece3.294 Text en © 2012 Published by Blackwell Publishing Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Godbout, Julie Yeh, Francis C Bousquet, Jean Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title | Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title_full | Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title_fullStr | Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title_full_unstemmed | Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title_short | Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex |
title_sort | large-scale asymmetric introgression of cytoplasmic dna reveals holocene range displacement in a north american boreal pine complex |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433990/ https://www.ncbi.nlm.nih.gov/pubmed/22957188 http://dx.doi.org/10.1002/ece3.294 |
work_keys_str_mv | AT godboutjulie largescaleasymmetricintrogressionofcytoplasmicdnarevealsholocenerangedisplacementinanorthamericanborealpinecomplex AT yehfrancisc largescaleasymmetricintrogressionofcytoplasmicdnarevealsholocenerangedisplacementinanorthamericanborealpinecomplex AT bousquetjean largescaleasymmetricintrogressionofcytoplasmicdnarevealsholocenerangedisplacementinanorthamericanborealpinecomplex |