Cargando…

Universal Access to HIV Treatment versus Universal ‘Test and Treat’: Transmission, Drug Resistance & Treatment Costs

In South Africa (SA) universal access to treatment for HIV-infected individuals in need has yet to be achieved. Currently ∼1 million receive treatment, but an additional 1.6 million are in need. It is being debated whether to use a universal ‘test and treat’ (T&T) strategy to try to eliminate HI...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Bradley G., Blower, Sally
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434222/
https://www.ncbi.nlm.nih.gov/pubmed/22957012
http://dx.doi.org/10.1371/journal.pone.0041212
Descripción
Sumario:In South Africa (SA) universal access to treatment for HIV-infected individuals in need has yet to be achieved. Currently ∼1 million receive treatment, but an additional 1.6 million are in need. It is being debated whether to use a universal ‘test and treat’ (T&T) strategy to try to eliminate HIV in SA; treatment reduces infectivity and hence transmission. Under a T&T strategy all HIV-infected individuals would receive treatment whether in need or not. This would require treating 5 million individuals almost immediately and providing treatment for several decades. We use a validated mathematical model to predict impact and costs of: (i) a universal T&T strategy and (ii) achieving universal access to treatment. Using modeling the WHO has predicted a universal T&T strategy in SA would eliminate HIV within a decade, and (after 40 years) cost ∼$10 billion less than achieving universal access. In contrast, we predict a universal T&T strategy in SA could eliminate HIV, but take 40 years and cost ∼$12 billion more than achieving universal access. We determine the difference in predictions is because the WHO has under-estimated survival time on treatment and ignored the risk of resistance. We predict, after 20 years, ∼2 million individuals would need second-line regimens if a universal T&T strategy is implemented versus ∼1.5 million if universal access is achieved. Costs need to be realistically estimated and multiple evaluation criteria used to compare ‘treatment as prevention’ with other prevention strategies. Before implementing a universal T&T strategy, which may not be sustainable, we recommend striving to achieve universal access to treatment as quickly as possible. We predict achieving universal access to treatment would be a very effective ‘treatment as prevention’ approach and bring the HIV epidemic in SA close to elimination, preventing ∼4 million infections after 20 years and ∼11 million after 40 years.