Cargando…
An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data
For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input...
Autores principales: | Hertäg, Loreen, Hass, Joachim, Golovko, Tatiana, Durstewitz, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434419/ https://www.ncbi.nlm.nih.gov/pubmed/22973220 http://dx.doi.org/10.3389/fncom.2012.00062 |
Ejemplares similares
-
An analytical approximation to the AdEx neuron model allows fast fitting to physiological data
por: Hertäg, Loreen, et al.
Publicado: (2011) -
Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise
por: Hertäg, Loreen, et al.
Publicado: (2014) -
A computational model of prefrontal cortex based on physiologically derived cellular parameter distributions
por: Hass, Joachim, et al.
Publicado: (2013) -
A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity
por: Hass, Joachim, et al.
Publicado: (2016) -
Prediction-error neurons in circuits with multiple neuron types: Formation, refinement, and functional implications
por: Hertäg, Loreen, et al.
Publicado: (2022)