Cargando…

Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System

We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO(2) adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions...

Descripción completa

Detalles Bibliográficos
Autores principales: Isoda, Takaaki, Urushibara, Ikuko, Sato, Hikaru, Yamauchi, Noriyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436036/
https://www.ncbi.nlm.nih.gov/pubmed/22969407
http://dx.doi.org/10.3390/s120608405
_version_ 1782242642012143616
author Isoda, Takaaki
Urushibara, Ikuko
Sato, Hikaru
Yamauchi, Noriyoshi
author_facet Isoda, Takaaki
Urushibara, Ikuko
Sato, Hikaru
Yamauchi, Noriyoshi
author_sort Isoda, Takaaki
collection PubMed
description We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO(2) adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions were investigated. The detection of specific cations without the presence of chelate molecules on the free electrode was also examined. By comparing both sets of results the complexation ability of the studied chelate molecules onto the electrode was evaluated. Five pairs of source-drain electrodes(×8 arrays) were fabricated on a glass substrate of 20 × 30mm in size. The individual Au/Cr (1.0/0.1μm thickness) electrodes had widths of 50 μm and an inter-electrode interval of 100μm.The fabricated source-drain electrodes were further coated with an insulation layer comprising a porous SiO(2) particle modified amino-group to adsorb the chelate molecules. The electrode chip was equipped with a handy-type sensor signal analyzer that was mounted on an amplifier circuit using a Miniship™ or a system in a packaged LSI device. For electrode surfaces containing different adsorbed chelate molecules an increase in the sensor voltage depended on a combination of host-guest reactions and generally decreased in the following order:5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine, tetrakis(p-toluenesulfonate) (TMPyP)as a Cu(2+)chelator and Cu(2+)>2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol(nitroso-PSAP) as an Fe(2+)chelator and Fe(2+)>4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BPDSA) as an Fe(2+)chelatorand Fe(2+)>3-[3-(2,4-dimethylphenylcarbamoyl)-2-hydroxynaphthalene-1-yl-azo]-4-hydroxybenzenesulfonic acid, sodium salt (XB-1) as a Mg(2+)chelator and Mg(2+)>2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BCIDSA) as a Cu(2+)chelator and Cu(2+), respectively. In contrast, for the electrode surfaces with adsorbed O,O′-bis(2-aminoethyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid (GEDTA) or O,O′-bis(2-aminophenyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid, tetrapotassium salt, hydrate (BAPTA) as a Ca(2+)chelator no increase in the detection voltage was found for all the electrode tests conducted in the presence of Ca(2+).To determine the differences in electrode detection, molecular orbital (MO) calculations of the chelate molecules and surface molecular modeling of the adsorbents were carried out. In accordance with frontier orbital theory, the lowest unoccupied MO (LUMO) of the chelate molecules can accept two lone pair electrons at the highest occupied MO (HOMO) of the amino group on the model surface structure of the SiO(2) particle. As a result, a good correlation was obtained between the LUMO-HOMO difference and the ion response of all the electrodes tested. Based on the results obtained, the order of adsorbed chelate molecules on adsorption particles reflects the different metal ion detection abilities of the electrode chips.
format Online
Article
Text
id pubmed-3436036
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-34360362012-09-11 Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System Isoda, Takaaki Urushibara, Ikuko Sato, Hikaru Yamauchi, Noriyoshi Sensors (Basel) Article We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO(2) adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions were investigated. The detection of specific cations without the presence of chelate molecules on the free electrode was also examined. By comparing both sets of results the complexation ability of the studied chelate molecules onto the electrode was evaluated. Five pairs of source-drain electrodes(×8 arrays) were fabricated on a glass substrate of 20 × 30mm in size. The individual Au/Cr (1.0/0.1μm thickness) electrodes had widths of 50 μm and an inter-electrode interval of 100μm.The fabricated source-drain electrodes were further coated with an insulation layer comprising a porous SiO(2) particle modified amino-group to adsorb the chelate molecules. The electrode chip was equipped with a handy-type sensor signal analyzer that was mounted on an amplifier circuit using a Miniship™ or a system in a packaged LSI device. For electrode surfaces containing different adsorbed chelate molecules an increase in the sensor voltage depended on a combination of host-guest reactions and generally decreased in the following order:5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine, tetrakis(p-toluenesulfonate) (TMPyP)as a Cu(2+)chelator and Cu(2+)>2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol(nitroso-PSAP) as an Fe(2+)chelator and Fe(2+)>4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BPDSA) as an Fe(2+)chelatorand Fe(2+)>3-[3-(2,4-dimethylphenylcarbamoyl)-2-hydroxynaphthalene-1-yl-azo]-4-hydroxybenzenesulfonic acid, sodium salt (XB-1) as a Mg(2+)chelator and Mg(2+)>2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BCIDSA) as a Cu(2+)chelator and Cu(2+), respectively. In contrast, for the electrode surfaces with adsorbed O,O′-bis(2-aminoethyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid (GEDTA) or O,O′-bis(2-aminophenyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid, tetrapotassium salt, hydrate (BAPTA) as a Ca(2+)chelator no increase in the detection voltage was found for all the electrode tests conducted in the presence of Ca(2+).To determine the differences in electrode detection, molecular orbital (MO) calculations of the chelate molecules and surface molecular modeling of the adsorbents were carried out. In accordance with frontier orbital theory, the lowest unoccupied MO (LUMO) of the chelate molecules can accept two lone pair electrons at the highest occupied MO (HOMO) of the amino group on the model surface structure of the SiO(2) particle. As a result, a good correlation was obtained between the LUMO-HOMO difference and the ion response of all the electrodes tested. Based on the results obtained, the order of adsorbed chelate molecules on adsorption particles reflects the different metal ion detection abilities of the electrode chips. Molecular Diversity Preservation International (MDPI) 2012-06-19 /pmc/articles/PMC3436036/ /pubmed/22969407 http://dx.doi.org/10.3390/s120608405 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Isoda, Takaaki
Urushibara, Ikuko
Sato, Hikaru
Yamauchi, Noriyoshi
Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title_full Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title_fullStr Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title_full_unstemmed Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title_short Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System
title_sort evaluation of complexation ability using a sensor electrode chip equipped with a wireless screening system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436036/
https://www.ncbi.nlm.nih.gov/pubmed/22969407
http://dx.doi.org/10.3390/s120608405
work_keys_str_mv AT isodatakaaki evaluationofcomplexationabilityusingasensorelectrodechipequippedwithawirelessscreeningsystem
AT urushibaraikuko evaluationofcomplexationabilityusingasensorelectrodechipequippedwithawirelessscreeningsystem
AT satohikaru evaluationofcomplexationabilityusingasensorelectrodechipequippedwithawirelessscreeningsystem
AT yamauchinoriyoshi evaluationofcomplexationabilityusingasensorelectrodechipequippedwithawirelessscreeningsystem