Cargando…
Metaprotein expression modeling for label-free quantitative proteomics
BACKGROUND: Label-free quantitative proteomics holds a great deal of promise for the future study of both medicine and biology. However, the data generated is extremely intricate in its correlation structure, and its proper analysis is complex. There are issues with missing identifications. There ar...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436780/ https://www.ncbi.nlm.nih.gov/pubmed/22559859 http://dx.doi.org/10.1186/1471-2105-13-74 |
_version_ | 1782242695496859648 |
---|---|
author | Lucas, Joseph E Thompson, J Will Dubois, Laura G McCarthy, Jeanette Tillmann, Hans Thompson, Alexander Shire, Norah Hendrickson, Ron Dieguez, Francisco Goldman, Phyllis Schwarz, Kathleen Patel, Keyur McHutchison, John Moseley, M Arthur |
author_facet | Lucas, Joseph E Thompson, J Will Dubois, Laura G McCarthy, Jeanette Tillmann, Hans Thompson, Alexander Shire, Norah Hendrickson, Ron Dieguez, Francisco Goldman, Phyllis Schwarz, Kathleen Patel, Keyur McHutchison, John Moseley, M Arthur |
author_sort | Lucas, Joseph E |
collection | PubMed |
description | BACKGROUND: Label-free quantitative proteomics holds a great deal of promise for the future study of both medicine and biology. However, the data generated is extremely intricate in its correlation structure, and its proper analysis is complex. There are issues with missing identifications. There are high levels of correlation between many, but not all, of the peptides derived from the same protein. Additionally, there may be systematic shifts in the sensitivity of the machine between experiments or even through time within the duration of a single experiment. RESULTS: We describe a hierarchical model for analyzing unbiased, label-free proteomics data which utilizes the covariance of peptide expression across samples as well as MS/MS-based identifications to group peptides—a strategy we call metaprotein expression modeling. Our metaprotein model acknowledges the possibility of misidentifications, post-translational modifications and systematic differences between samples due to changes in instrument sensitivity or differences in total protein concentration. In addition, our approach allows us to validate findings from unbiased, label-free proteomics experiments with further unbiased, label-free proteomics experiments. Finally, we demonstrate the clinical/translational utility of the model for building predictors capable of differentiating biological phenotypes as well as for validating those findings in the context of three novel cohorts of patients with Hepatitis C. CONCLUSIONS: Mass-spectrometry proteomics is quickly becoming a powerful tool for studying biological and translational questions. Making use of all of the information contained in a particular set of data will be critical to the success of those endeavors. Our proposed model represents an advance in the ability of statistical models of proteomic data to identify and utilize correlation between features. This allows validation of predictors without translation to targeted assays in addition to informing the choice of targets when it is appropriate to generate those assays. |
format | Online Article Text |
id | pubmed-3436780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34367802012-09-11 Metaprotein expression modeling for label-free quantitative proteomics Lucas, Joseph E Thompson, J Will Dubois, Laura G McCarthy, Jeanette Tillmann, Hans Thompson, Alexander Shire, Norah Hendrickson, Ron Dieguez, Francisco Goldman, Phyllis Schwarz, Kathleen Patel, Keyur McHutchison, John Moseley, M Arthur BMC Bioinformatics Research Article BACKGROUND: Label-free quantitative proteomics holds a great deal of promise for the future study of both medicine and biology. However, the data generated is extremely intricate in its correlation structure, and its proper analysis is complex. There are issues with missing identifications. There are high levels of correlation between many, but not all, of the peptides derived from the same protein. Additionally, there may be systematic shifts in the sensitivity of the machine between experiments or even through time within the duration of a single experiment. RESULTS: We describe a hierarchical model for analyzing unbiased, label-free proteomics data which utilizes the covariance of peptide expression across samples as well as MS/MS-based identifications to group peptides—a strategy we call metaprotein expression modeling. Our metaprotein model acknowledges the possibility of misidentifications, post-translational modifications and systematic differences between samples due to changes in instrument sensitivity or differences in total protein concentration. In addition, our approach allows us to validate findings from unbiased, label-free proteomics experiments with further unbiased, label-free proteomics experiments. Finally, we demonstrate the clinical/translational utility of the model for building predictors capable of differentiating biological phenotypes as well as for validating those findings in the context of three novel cohorts of patients with Hepatitis C. CONCLUSIONS: Mass-spectrometry proteomics is quickly becoming a powerful tool for studying biological and translational questions. Making use of all of the information contained in a particular set of data will be critical to the success of those endeavors. Our proposed model represents an advance in the ability of statistical models of proteomic data to identify and utilize correlation between features. This allows validation of predictors without translation to targeted assays in addition to informing the choice of targets when it is appropriate to generate those assays. BioMed Central 2012-05-04 /pmc/articles/PMC3436780/ /pubmed/22559859 http://dx.doi.org/10.1186/1471-2105-13-74 Text en Copyright ©2012 Lucas et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lucas, Joseph E Thompson, J Will Dubois, Laura G McCarthy, Jeanette Tillmann, Hans Thompson, Alexander Shire, Norah Hendrickson, Ron Dieguez, Francisco Goldman, Phyllis Schwarz, Kathleen Patel, Keyur McHutchison, John Moseley, M Arthur Metaprotein expression modeling for label-free quantitative proteomics |
title | Metaprotein expression modeling for label-free quantitative proteomics |
title_full | Metaprotein expression modeling for label-free quantitative proteomics |
title_fullStr | Metaprotein expression modeling for label-free quantitative proteomics |
title_full_unstemmed | Metaprotein expression modeling for label-free quantitative proteomics |
title_short | Metaprotein expression modeling for label-free quantitative proteomics |
title_sort | metaprotein expression modeling for label-free quantitative proteomics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436780/ https://www.ncbi.nlm.nih.gov/pubmed/22559859 http://dx.doi.org/10.1186/1471-2105-13-74 |
work_keys_str_mv | AT lucasjosephe metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT thompsonjwill metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT duboislaurag metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT mccarthyjeanette metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT tillmannhans metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT thompsonalexander metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT shirenorah metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT hendricksonron metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT dieguezfrancisco metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT goldmanphyllis metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT schwarzkathleen metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT patelkeyur metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT mchutchisonjohn metaproteinexpressionmodelingforlabelfreequantitativeproteomics AT moseleymarthur metaproteinexpressionmodelingforlabelfreequantitativeproteomics |