Cargando…
Techniques to cope with missing data in host–pathogen protein interaction prediction
Motivation: Approaches that use supervised machine learning techniques for protein–protein interaction (PPI) prediction typically use features obtained by integrating several sources of data. Often certain attributes of the data are not available, resulting in missing values. In particular, our host...
Autores principales: | Kshirsagar, Meghana, Carbonell, Jaime, Klein-Seetharaman, Judith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436802/ https://www.ncbi.nlm.nih.gov/pubmed/22962468 http://dx.doi.org/10.1093/bioinformatics/bts375 |
Ejemplares similares
-
Techniques for transferring host-pathogen protein interactions knowledge to new tasks
por: Kshirsagar, Meghana, et al.
Publicado: (2015) -
Multitask learning for host–pathogen protein interactions
por: Kshirsagar, Meghana, et al.
Publicado: (2013) -
Comparing human–Salmonella with plant–Salmonella protein–protein interaction predictions
por: Schleker, Sylvia, et al.
Publicado: (2015) -
Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins
por: Qi, Yanjun, et al.
Publicado: (2010) -
A mixture of feature experts approach for protein-protein interaction prediction
por: Qi, Yanjun, et al.
Publicado: (2007)