Cargando…
An exome sequencing pipeline for identifying and genotyping common CNVs associated with disease with application to psoriasis
Motivation: Despite the prevalence of copy number variation (CNV) in the human genome, only a handful of confirmed associations have been reported between common CNVs and complex disease. This may be partially attributed to the difficulty in accurately genotyping CNVs in large cohorts using array-ba...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436806/ https://www.ncbi.nlm.nih.gov/pubmed/22962454 http://dx.doi.org/10.1093/bioinformatics/bts379 |
Sumario: | Motivation: Despite the prevalence of copy number variation (CNV) in the human genome, only a handful of confirmed associations have been reported between common CNVs and complex disease. This may be partially attributed to the difficulty in accurately genotyping CNVs in large cohorts using array-based technologies. Exome sequencing is now widely being applied to case–control cohorts and presents an exciting opportunity to look for common CNVs associated with disease. Results: We developed ExoCNVTest: an exome sequencing analysis pipeline to identify disease-associated CNVs and to generate absolute copy number genotypes at putatively associated loci. Our method re-discovered the LCE3B_LCE3C CNV association with psoriasis (P-value = 5 × 10e−6) while controlling inflation of test statistics (λ < 1). ExoCNVTest-derived absolute CNV genotypes were 97.4% concordant with PCR-derived genotypes at this locus. Availability and implementation: ExoCNVTest has been implemented in Java and R and is freely available from www1.imperial.ac.uk/medicine/people/l.coin/. Contact: wangj@genomics.org.cn or Lachlan.J.M.Coin@genomics.org.cn |
---|