Cargando…

Genomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements

Motivation: Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding el...

Descripción completa

Detalles Bibliográficos
Autores principales: Dimitrieva, Slavica, Bucher, Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436827/
https://www.ncbi.nlm.nih.gov/pubmed/22962458
http://dx.doi.org/10.1093/bioinformatics/bts400
Descripción
Sumario:Motivation: Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding elements (UCNEs). These elements are organized as large clusters, so-called gene regulatory blocks (GRBs) around key developmental genes. Their molecular functions and the reasons for their high degree of conservation remain enigmatic. Results: In a special setting of genomic context analysis, we analyzed the fate of GRBs after a whole-genome duplication event in five fish genomes. We found that in most cases all UCNEs were retained together as a single block, whereas the corresponding target genes were often retained in two copies, one completely devoid of UCNEs. This ‘winner-takes-all’ pattern suggests that UCNEs of a GRB function in a highly cooperative manner. We propose that the multitude of interactions between UCNEs is the reason for their extreme sequence conservation. Supplementary information: Supplementary data are available at Bioinformatics online and at http://ccg.vital-it.ch/ucne/