Cargando…

Long read alignment based on maximal exact match seeds

Motivation: The explosive growth of next-generation sequencing datasets poses a challenge to the mapping of reads to reference genomes in terms of alignment quality and execution speed. With the continuing progress of high-throughput sequencing technologies, read length is constantly increasing and...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yongchao, Schmidt, Bertil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436841/
https://www.ncbi.nlm.nih.gov/pubmed/22962447
http://dx.doi.org/10.1093/bioinformatics/bts414
Descripción
Sumario:Motivation: The explosive growth of next-generation sequencing datasets poses a challenge to the mapping of reads to reference genomes in terms of alignment quality and execution speed. With the continuing progress of high-throughput sequencing technologies, read length is constantly increasing and many existing aligners are becoming inefficient as generated reads grow larger. Results: We present CUSHAW2, a parallelized, accurate, and memory-efficient long read aligner. Our aligner is based on the seed-and-extend approach and uses maximal exact matches as seeds to find gapped alignments. We have evaluated and compared CUSHAW2 to the three other long read aligners BWA-SW, Bowtie2 and GASSST, by aligning simulated and real datasets to the human genome. The performance evaluation shows that CUSHAW2 is consistently among the highest-ranked aligners in terms of alignment quality for both single-end and paired-end alignment, while demonstrating highly competitive speed. Furthermore, our aligner shows good parallel scalability with respect to the number of CPU threads. Availability: CUSHAW2, written in C++, and all simulated datasets are available at http://cushaw2.sourceforge.net Contact: liuy@uni-mainz.de; bertil.schmidt@uni-mainz.de Supplementary information: Supplementary data are available at Bioinformatics online.