Cargando…
The immune gene repertoire of an important viral reservoir, the Australian black flying fox
BACKGROUND: Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436859/ https://www.ncbi.nlm.nih.gov/pubmed/22716473 http://dx.doi.org/10.1186/1471-2164-13-261 |
_version_ | 1782242713389760512 |
---|---|
author | Papenfuss, Anthony T Baker, Michelle L Feng, Zhi-Ping Tachedjian, Mary Crameri, Gary Cowled, Chris Ng, Justin Janardhana, Vijaya Field, Hume E Wang, Lin-Fa |
author_facet | Papenfuss, Anthony T Baker, Michelle L Feng, Zhi-Ping Tachedjian, Mary Crameri, Gary Cowled, Chris Ng, Justin Janardhana, Vijaya Field, Hume E Wang, Lin-Fa |
author_sort | Papenfuss, Anthony T |
collection | PubMed |
description | BACKGROUND: Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. RESULTS: Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. CONCLUSIONS: This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection. |
format | Online Article Text |
id | pubmed-3436859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34368592012-09-08 The immune gene repertoire of an important viral reservoir, the Australian black flying fox Papenfuss, Anthony T Baker, Michelle L Feng, Zhi-Ping Tachedjian, Mary Crameri, Gary Cowled, Chris Ng, Justin Janardhana, Vijaya Field, Hume E Wang, Lin-Fa BMC Genomics Research Article BACKGROUND: Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. RESULTS: Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. CONCLUSIONS: This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection. BioMed Central 2012-06-20 /pmc/articles/PMC3436859/ /pubmed/22716473 http://dx.doi.org/10.1186/1471-2164-13-261 Text en Copyright ©2012 Papenfuss et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Papenfuss, Anthony T Baker, Michelle L Feng, Zhi-Ping Tachedjian, Mary Crameri, Gary Cowled, Chris Ng, Justin Janardhana, Vijaya Field, Hume E Wang, Lin-Fa The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title | The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title_full | The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title_fullStr | The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title_full_unstemmed | The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title_short | The immune gene repertoire of an important viral reservoir, the Australian black flying fox |
title_sort | immune gene repertoire of an important viral reservoir, the australian black flying fox |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436859/ https://www.ncbi.nlm.nih.gov/pubmed/22716473 http://dx.doi.org/10.1186/1471-2164-13-261 |
work_keys_str_mv | AT papenfussanthonyt theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT bakermichellel theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT fengzhiping theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT tachedjianmary theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT cramerigary theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT cowledchris theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT ngjustin theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT janardhanavijaya theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT fieldhumee theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT wanglinfa theimmunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT papenfussanthonyt immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT bakermichellel immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT fengzhiping immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT tachedjianmary immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT cramerigary immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT cowledchris immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT ngjustin immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT janardhanavijaya immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT fieldhumee immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox AT wanglinfa immunegenerepertoireofanimportantviralreservoirtheaustralianblackflyingfox |