Cargando…

Parametric Mapping of Brain Tissues from Diffusion Kurtosis Tensor

Diffusion kurtosis imaging (DKI) is a new diffusion magnetic resonance imaging (MRI) technique to go beyond the shortages of conventional diffusion tensor imaging (DTI) from the assumption that water diffuse in biological tissue is Gaussian. Kurtosis is used to measure the deviation of water diffusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yuanyuan, Zhao, Xin, Ni, Hongyan, Feng, Jie, Ding, Hao, Qi, Hongzhi, Wan, Baikun, Ming, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437293/
https://www.ncbi.nlm.nih.gov/pubmed/22969833
http://dx.doi.org/10.1155/2012/820847
Descripción
Sumario:Diffusion kurtosis imaging (DKI) is a new diffusion magnetic resonance imaging (MRI) technique to go beyond the shortages of conventional diffusion tensor imaging (DTI) from the assumption that water diffuse in biological tissue is Gaussian. Kurtosis is used to measure the deviation of water diffusion from Gaussian model, which is called non-Gaussian, in DKI. However, the high-order kurtosis tensor in the model brings great difficulties in feature extraction. In this study, parameters like fractional anisotropy of kurtosis eigenvalues (FAek) and mean values of kurtosis eigenvalues (Mek) were proposed, and regional analysis was performed for 4 different tissues: corpus callosum, crossing fibers, thalamus, and cerebral cortex, compared with other parameters. Scatterplot analysis and Gaussian mixture decomposition of different parametric maps are used for tissues identification. Diffusion kurtosis information extracted from kurtosis tensor presented a more detailed classification of tissues actually as well as clinical significance, and the FAek of D-eigenvalues showed good sensitivity of tissues complexity which is important for further study of DKI.