Cargando…
Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision
Adult neurogenesis arises from neural stem cells within specialized niches(1–3). Neuronal activity and experience, presumably acting upon this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/ https://www.ncbi.nlm.nih.gov/pubmed/22842902 http://dx.doi.org/10.1038/nature11306 |
_version_ | 1782242897337253888 |
---|---|
author | Song, Juan Zhong, Chun Bonaguidi, Michael A. Sun, Gerald J. Hsu, Derek Gu, Yan Meletis, Konstantinos Huang, Z. Josh Ge, Shaoyu Enikolopov, Grigori Deisseroth, Karl Luscher, Bernhard Christian, Kimberly Ming, Guo-li Song, Hongjun |
author_facet | Song, Juan Zhong, Chun Bonaguidi, Michael A. Sun, Gerald J. Hsu, Derek Gu, Yan Meletis, Konstantinos Huang, Z. Josh Ge, Shaoyu Enikolopov, Grigori Deisseroth, Karl Luscher, Bernhard Christian, Kimberly Ming, Guo-li Song, Hongjun |
author_sort | Song, Juan |
collection | PubMed |
description | Adult neurogenesis arises from neural stem cells within specialized niches(1–3). Neuronal activity and experience, presumably acting upon this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival(1, 3). Whether local neuronal circuitry has a direct impact on adult neural stem cells is unknown. Here we show that in the adult hippocampus nestin-expressing radial glia-like quiescent neural stem cells(4–9) (RGLs) respond tonically to the neurotransmitter GABA via γ(2) subunit-containing GABA(A) Rs. Clonal analysis(9) of individual RGLs revealed a rapid exit from quiescence and enhanced symmetric self-renewal after conditional γ(2) deletion. RGLs are in close proximity to GAD67(+) terminals of parvalbumin-expressing (PV(+)) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of dentate PV(+), but not somatostatin- or vasoactive intestinal polypeptide (VIP)-expressing, interneuron activity can dictate the RGL choice between quiescence and activation. Furthermore, PV(+) interneuron activation restores RGL quiescence following social isolation, an experience that induces RGL activation and symmetric division(8). Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience. |
format | Online Article Text |
id | pubmed-3438284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
record_format | MEDLINE/PubMed |
spelling | pubmed-34382842013-03-06 Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision Song, Juan Zhong, Chun Bonaguidi, Michael A. Sun, Gerald J. Hsu, Derek Gu, Yan Meletis, Konstantinos Huang, Z. Josh Ge, Shaoyu Enikolopov, Grigori Deisseroth, Karl Luscher, Bernhard Christian, Kimberly Ming, Guo-li Song, Hongjun Nature Article Adult neurogenesis arises from neural stem cells within specialized niches(1–3). Neuronal activity and experience, presumably acting upon this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival(1, 3). Whether local neuronal circuitry has a direct impact on adult neural stem cells is unknown. Here we show that in the adult hippocampus nestin-expressing radial glia-like quiescent neural stem cells(4–9) (RGLs) respond tonically to the neurotransmitter GABA via γ(2) subunit-containing GABA(A) Rs. Clonal analysis(9) of individual RGLs revealed a rapid exit from quiescence and enhanced symmetric self-renewal after conditional γ(2) deletion. RGLs are in close proximity to GAD67(+) terminals of parvalbumin-expressing (PV(+)) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of dentate PV(+), but not somatostatin- or vasoactive intestinal polypeptide (VIP)-expressing, interneuron activity can dictate the RGL choice between quiescence and activation. Furthermore, PV(+) interneuron activation restores RGL quiescence following social isolation, an experience that induces RGL activation and symmetric division(8). Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience. 2012-09-06 /pmc/articles/PMC3438284/ /pubmed/22842902 http://dx.doi.org/10.1038/nature11306 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Song, Juan Zhong, Chun Bonaguidi, Michael A. Sun, Gerald J. Hsu, Derek Gu, Yan Meletis, Konstantinos Huang, Z. Josh Ge, Shaoyu Enikolopov, Grigori Deisseroth, Karl Luscher, Bernhard Christian, Kimberly Ming, Guo-li Song, Hongjun Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title | Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title_full | Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title_fullStr | Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title_full_unstemmed | Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title_short | Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
title_sort | neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/ https://www.ncbi.nlm.nih.gov/pubmed/22842902 http://dx.doi.org/10.1038/nature11306 |
work_keys_str_mv | AT songjuan neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT zhongchun neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT bonaguidimichaela neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT sungeraldj neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT hsuderek neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT guyan neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT meletiskonstantinos neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT huangzjosh neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT geshaoyu neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT enikolopovgrigori neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT deisserothkarl neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT luscherbernhard neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT christiankimberly neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT mingguoli neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision AT songhongjun neuronalcircuitrymechanismregulatingadultquiescentneuralstemcellfatedecision |