Cargando…
Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays
BACKGROUND: Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439689/ https://www.ncbi.nlm.nih.gov/pubmed/22703589 http://dx.doi.org/10.1186/2044-5040-2-13 |
_version_ | 1782243046412255232 |
---|---|
author | Ippolito, Joseph Arpke, Robert W Haider, Kerri T Zhang, Jianyi Kyba, Michael |
author_facet | Ippolito, Joseph Arpke, Robert W Haider, Kerri T Zhang, Jianyi Kyba, Michael |
author_sort | Ippolito, Joseph |
collection | PubMed |
description | BACKGROUND: Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell (CFC) assays, however large numbers of colonies need to be assayed to give meaningful data, and manually quantifying nuclei and scoring markers of differentiation is experimentally limiting. METHODS: We present G-Tool, a multiplatform (Java) open-source algorithm that analyzes an ensemble of fluorescent micrographs of satellite cell-derived colonies to provide quantitative and statistically meaningful metrics of myogenic potential, including proliferation capacity and propensity to differentiate. RESULTS: We demonstrate the utility of G-Tool in two applications: first, we quantify the response of satellite cells to oxygen concentration. Compared to 3% oxygen which approximates tissue levels, we find that 21% oxygen, the ambient level, markedly limits the proliferative potential of transit amplifying progeny but at the same time inhibits the rate of terminal myogenic differentiation. We also test whether satellite cells from different muscles have intrinsic differences that can be read out in vitro. Compared to masseter, dorsi, forelimb and hindlimb muscles, we find that the diaphragm satellite cells have significantly increased proliferative potential and a reduced propensity to spontaneously differentiate. These features may be related to the unique always-active status of the diaphragm. CONCLUSIONS: G-Tool facilitates consistent and reproducible CFC analysis between experiments and individuals. It is released under an open-source license that enables further development by interested members of the community. |
format | Online Article Text |
id | pubmed-3439689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34396892012-09-17 Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays Ippolito, Joseph Arpke, Robert W Haider, Kerri T Zhang, Jianyi Kyba, Michael Skelet Muscle Methodology BACKGROUND: Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell (CFC) assays, however large numbers of colonies need to be assayed to give meaningful data, and manually quantifying nuclei and scoring markers of differentiation is experimentally limiting. METHODS: We present G-Tool, a multiplatform (Java) open-source algorithm that analyzes an ensemble of fluorescent micrographs of satellite cell-derived colonies to provide quantitative and statistically meaningful metrics of myogenic potential, including proliferation capacity and propensity to differentiate. RESULTS: We demonstrate the utility of G-Tool in two applications: first, we quantify the response of satellite cells to oxygen concentration. Compared to 3% oxygen which approximates tissue levels, we find that 21% oxygen, the ambient level, markedly limits the proliferative potential of transit amplifying progeny but at the same time inhibits the rate of terminal myogenic differentiation. We also test whether satellite cells from different muscles have intrinsic differences that can be read out in vitro. Compared to masseter, dorsi, forelimb and hindlimb muscles, we find that the diaphragm satellite cells have significantly increased proliferative potential and a reduced propensity to spontaneously differentiate. These features may be related to the unique always-active status of the diaphragm. CONCLUSIONS: G-Tool facilitates consistent and reproducible CFC analysis between experiments and individuals. It is released under an open-source license that enables further development by interested members of the community. BioMed Central 2012-06-15 /pmc/articles/PMC3439689/ /pubmed/22703589 http://dx.doi.org/10.1186/2044-5040-2-13 Text en Copyright ©2012 Ippolito et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Ippolito, Joseph Arpke, Robert W Haider, Kerri T Zhang, Jianyi Kyba, Michael Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title | Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title_full | Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title_fullStr | Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title_full_unstemmed | Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title_short | Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays |
title_sort | satellite cell heterogeneity revealed by g-tool, an open algorithm to quantify myogenesis through colony-forming assays |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439689/ https://www.ncbi.nlm.nih.gov/pubmed/22703589 http://dx.doi.org/10.1186/2044-5040-2-13 |
work_keys_str_mv | AT ippolitojoseph satellitecellheterogeneityrevealedbygtoolanopenalgorithmtoquantifymyogenesisthroughcolonyformingassays AT arpkerobertw satellitecellheterogeneityrevealedbygtoolanopenalgorithmtoquantifymyogenesisthroughcolonyformingassays AT haiderkerrit satellitecellheterogeneityrevealedbygtoolanopenalgorithmtoquantifymyogenesisthroughcolonyformingassays AT zhangjianyi satellitecellheterogeneityrevealedbygtoolanopenalgorithmtoquantifymyogenesisthroughcolonyformingassays AT kybamichael satellitecellheterogeneityrevealedbygtoolanopenalgorithmtoquantifymyogenesisthroughcolonyformingassays |