Cargando…
Prioritizing cancer-related key miRNA–target interactions by integrative genomics
Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA–target interactions remains a challenge. We performed a s...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439920/ https://www.ncbi.nlm.nih.gov/pubmed/22705797 http://dx.doi.org/10.1093/nar/gks538 |
Sumario: | Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA–target interactions remains a challenge. We performed a systematic analysis of known cancer-related key interactions manually curated from published papers based on different aspects including sequence, expression and function. Known cancer-related key interactions show more miRNA binding sites (especially for 8mer binding sites), more reliable binding of miRNA to the target region, higher expression associations and broader functional coverage when compared to non-disease-related interactions. Through integrating these sequence, expression and function features, we proposed a bioinformatics approach termed PCmtI to prioritize cancer-related key interactions. Ten-fold cross-validation of our approach revealed that it can achieve an area under the receiver operating characteristic curve of 93.9%. Subsequent leave-one-miRNA-out cross-validation also demonstrated the performance of our approach. Using miR-155 as a case, we found that the top ranked interactions can account for most functions of miR-155. In addition, we further demonstrated the power of our approach by 23 recently identified cancer-related key interactions. The approach described here offers a new way for the discovery of novel cancer-related key miRNA–target interactions. |
---|