Cargando…
Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components
Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439929/ https://www.ncbi.nlm.nih.gov/pubmed/22723376 http://dx.doi.org/10.1093/nar/gks568 |
_version_ | 1782243094375170048 |
---|---|
author | Zhou, Ying Asahara, Haruichi Gaucher, Eric A. Chong, Shaorong |
author_facet | Zhou, Ying Asahara, Haruichi Gaucher, Eric A. Chong, Shaorong |
author_sort | Zhou, Ying |
collection | PubMed |
description | Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system was fully functional, capable of translating natural messenger RNA (mRNA) into active full-length proteins at temperatures up to 65°C and with yields up to 60 μg/ml. Surprisingly, the synthesis of active proteins also occurred at 37°C, a temperature well below the minimal growth temperature for T. thermophilus. A polyamine was required, with tetraamine being most effective, for translation at both high and low temperatures. Using such a defined in vitro system, we demonstrated a minimal set of components that are sufficient for synthesizing active proteins at high temperatures, the functional compatibility of key translation components between T. thermophilus and E. coli, and the functional conservation of a number of resurrected ancient elongation factors. This work sets the stage for future experiments that apply abundant structural information to biochemical characterization of protein translation and folding in T. thermophilus. Because it contains significantly reduced nucleases and proteases, this reconstituted thermostable cell-free protein synthesis system may enable in vitro engineering of proteins with improved thermostability. |
format | Online Article Text |
id | pubmed-3439929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34399292012-09-12 Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components Zhou, Ying Asahara, Haruichi Gaucher, Eric A. Chong, Shaorong Nucleic Acids Res Molecular Biology Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system was fully functional, capable of translating natural messenger RNA (mRNA) into active full-length proteins at temperatures up to 65°C and with yields up to 60 μg/ml. Surprisingly, the synthesis of active proteins also occurred at 37°C, a temperature well below the minimal growth temperature for T. thermophilus. A polyamine was required, with tetraamine being most effective, for translation at both high and low temperatures. Using such a defined in vitro system, we demonstrated a minimal set of components that are sufficient for synthesizing active proteins at high temperatures, the functional compatibility of key translation components between T. thermophilus and E. coli, and the functional conservation of a number of resurrected ancient elongation factors. This work sets the stage for future experiments that apply abundant structural information to biochemical characterization of protein translation and folding in T. thermophilus. Because it contains significantly reduced nucleases and proteases, this reconstituted thermostable cell-free protein synthesis system may enable in vitro engineering of proteins with improved thermostability. Oxford University Press 2012-09 2012-06-21 /pmc/articles/PMC3439929/ /pubmed/22723376 http://dx.doi.org/10.1093/nar/gks568 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Molecular Biology Zhou, Ying Asahara, Haruichi Gaucher, Eric A. Chong, Shaorong Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title | Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title_full | Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title_fullStr | Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title_full_unstemmed | Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title_short | Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
title_sort | reconstitution of translation from thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439929/ https://www.ncbi.nlm.nih.gov/pubmed/22723376 http://dx.doi.org/10.1093/nar/gks568 |
work_keys_str_mv | AT zhouying reconstitutionoftranslationfromthermusthermophilusrevealsaminimalsetofcomponentssufficientforproteinsynthesisathightemperaturesandfunctionalconservationofmodernandancienttranslationcomponents AT asaharaharuichi reconstitutionoftranslationfromthermusthermophilusrevealsaminimalsetofcomponentssufficientforproteinsynthesisathightemperaturesandfunctionalconservationofmodernandancienttranslationcomponents AT gauchererica reconstitutionoftranslationfromthermusthermophilusrevealsaminimalsetofcomponentssufficientforproteinsynthesisathightemperaturesandfunctionalconservationofmodernandancienttranslationcomponents AT chongshaorong reconstitutionoftranslationfromthermusthermophilusrevealsaminimalsetofcomponentssufficientforproteinsynthesisathightemperaturesandfunctionalconservationofmodernandancienttranslationcomponents |