Cargando…

Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton

BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preferenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Fang, Men, Xingyuan, Yang, Bing, Su, Jianwei, Zhang, Yongsheng, Zhao, Zihua, Ge, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440376/
https://www.ncbi.nlm.nih.gov/pubmed/22984499
http://dx.doi.org/10.1371/journal.pone.0044379
_version_ 1782243147562090496
author Ouyang, Fang
Men, Xingyuan
Yang, Bing
Su, Jianwei
Zhang, Yongsheng
Zhao, Zihua
Ge, Feng
author_facet Ouyang, Fang
Men, Xingyuan
Yang, Bing
Su, Jianwei
Zhang, Yongsheng
Zhao, Zihua
Ge, Feng
author_sort Ouyang, Fang
collection PubMed
description BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. METHODOLOGY: The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010. PRINCIPAL FINDING: Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13)C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3)- to a C(4)-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4) resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C(3)-based resource in June, July and August, while approximately 80% of the diet originated from a C(4)-based resource in September. CONCLUSION/SIGNIFICANCE: Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.
format Online
Article
Text
id pubmed-3440376
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34403762012-09-14 Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton Ouyang, Fang Men, Xingyuan Yang, Bing Su, Jianwei Zhang, Yongsheng Zhao, Zihua Ge, Feng PLoS One Research Article BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. METHODOLOGY: The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010. PRINCIPAL FINDING: Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13)C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3)- to a C(4)-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4) resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C(3)-based resource in June, July and August, while approximately 80% of the diet originated from a C(4)-based resource in September. CONCLUSION/SIGNIFICANCE: Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton. Public Library of Science 2012-09-12 /pmc/articles/PMC3440376/ /pubmed/22984499 http://dx.doi.org/10.1371/journal.pone.0044379 Text en © 2012 Ouyang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ouyang, Fang
Men, Xingyuan
Yang, Bing
Su, Jianwei
Zhang, Yongsheng
Zhao, Zihua
Ge, Feng
Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title_full Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title_fullStr Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title_full_unstemmed Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title_short Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton
title_sort maize benefits the predatory beetle, propylea japonica (thunberg), to provide potential to enhance biological control for aphids in cotton
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440376/
https://www.ncbi.nlm.nih.gov/pubmed/22984499
http://dx.doi.org/10.1371/journal.pone.0044379
work_keys_str_mv AT ouyangfang maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT menxingyuan maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT yangbing maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT sujianwei maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT zhangyongsheng maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT zhaozihua maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton
AT gefeng maizebenefitsthepredatorybeetlepropyleajaponicathunbergtoprovidepotentialtoenhancebiologicalcontrolforaphidsincotton