Cargando…
Efficient Universal Computing Architectures for Decoding Neural Activity
The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and a...
Autores principales: | Rapoport, Benjamin I., Turicchia, Lorenzo, Wattanapanitch, Woradorn, Davidson, Thomas J., Sarpeshkar, Rahul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440437/ https://www.ncbi.nlm.nih.gov/pubmed/22984404 http://dx.doi.org/10.1371/journal.pone.0042492 |
Ejemplares similares
-
A Glucose Fuel Cell for Implantable Brain–Machine Interfaces
por: Rapoport, Benjamin I., et al.
Publicado: (2012) -
Resource efficient LDPC decoders: from algorithms to hardware architectures
por: Chandrasetty, Vikram Arkalgud, et al.
Publicado: (2017) -
Neural Decoding for Intracortical Brain–Computer Interfaces
por: Dong, Yuanrui, et al.
Publicado: (2023) -
Machine Learning for Neural Decoding
por: Glaser, Joshua I., et al.
Publicado: (2020) -
Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems
por: Sarpeshkar, Rahul
Publicado: (2010)