Cargando…

The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells

PURPOSE: To characterize the expression pattern of cadherin 23 (cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D. METHODS: In situ hybridization and immunohistochemistry were u...

Descripción completa

Detalles Bibliográficos
Autores principales: Glover, Greta, Mueller, Kaspar P., Söllner, Christian, Neuhauss, Stephan C.F., Nicolson, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441156/
https://www.ncbi.nlm.nih.gov/pubmed/22977299
_version_ 1782243230931222528
author Glover, Greta
Mueller, Kaspar P.
Söllner, Christian
Neuhauss, Stephan C.F.
Nicolson, Teresa
author_facet Glover, Greta
Mueller, Kaspar P.
Söllner, Christian
Neuhauss, Stephan C.F.
Nicolson, Teresa
author_sort Glover, Greta
collection PubMed
description PURPOSE: To characterize the expression pattern of cadherin 23 (cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D. METHODS: In situ hybridization and immunohistochemistry were used to characterize cdh23 expression in the zebrafish, and to evaluate cdh23 mutants for retinal degeneration. Visual function was assessed by measurement of the optokinetic response in cdh23 siblings and mutants. RESULTS: We detected cdh23 mRNA expression in multiple nuclei of both the developing and adult central nervous system. In the retina, cdh23 mRNA was expressed in a small subset of amacrine cells, beginning at 70 h postfertilization and continuing through adulthood. No expression was detected in photoreceptors. The cdh23-positive population of amacrine cells was GABAergic. Examination of homozygous larvae expressing two different mutant alleles of cdh23—cdh23(tc317e) or cdh23(tj264a)—revealed no detectable morphological retinal defects or degeneration. In addition, the optokinetic response to moving gratings of varied contrast or spatial frequency was normal in both mutants. CONCLUSIONS: Unlike in other vertebrates, cdh23 is not detectable in zebrafish photoreceptors. Instead, cdh23 is expressed by a small subset of GABAergic amacrine cells. Moreover, larvae with mutations in cdh23 do not exhibit any signs of gross retinal degeneration or dysfunction. The role played by cdh23 in human retinal function is likely performed by either a different gene or an unidentified cdh23 splice variant in the retina that is not affected by the above mutations.
format Online
Article
Text
id pubmed-3441156
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-34411562012-09-13 The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells Glover, Greta Mueller, Kaspar P. Söllner, Christian Neuhauss, Stephan C.F. Nicolson, Teresa Mol Vis Research Article PURPOSE: To characterize the expression pattern of cadherin 23 (cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D. METHODS: In situ hybridization and immunohistochemistry were used to characterize cdh23 expression in the zebrafish, and to evaluate cdh23 mutants for retinal degeneration. Visual function was assessed by measurement of the optokinetic response in cdh23 siblings and mutants. RESULTS: We detected cdh23 mRNA expression in multiple nuclei of both the developing and adult central nervous system. In the retina, cdh23 mRNA was expressed in a small subset of amacrine cells, beginning at 70 h postfertilization and continuing through adulthood. No expression was detected in photoreceptors. The cdh23-positive population of amacrine cells was GABAergic. Examination of homozygous larvae expressing two different mutant alleles of cdh23—cdh23(tc317e) or cdh23(tj264a)—revealed no detectable morphological retinal defects or degeneration. In addition, the optokinetic response to moving gratings of varied contrast or spatial frequency was normal in both mutants. CONCLUSIONS: Unlike in other vertebrates, cdh23 is not detectable in zebrafish photoreceptors. Instead, cdh23 is expressed by a small subset of GABAergic amacrine cells. Moreover, larvae with mutations in cdh23 do not exhibit any signs of gross retinal degeneration or dysfunction. The role played by cdh23 in human retinal function is likely performed by either a different gene or an unidentified cdh23 splice variant in the retina that is not affected by the above mutations. Molecular Vision 2012-09-05 /pmc/articles/PMC3441156/ /pubmed/22977299 Text en Copyright © 2012 Molecular Vision. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Glover, Greta
Mueller, Kaspar P.
Söllner, Christian
Neuhauss, Stephan C.F.
Nicolson, Teresa
The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title_full The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title_fullStr The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title_full_unstemmed The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title_short The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
title_sort usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441156/
https://www.ncbi.nlm.nih.gov/pubmed/22977299
work_keys_str_mv AT glovergreta theushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT muellerkasparp theushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT sollnerchristian theushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT neuhaussstephancf theushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT nicolsonteresa theushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT glovergreta ushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT muellerkasparp ushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT sollnerchristian ushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT neuhaussstephancf ushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells
AT nicolsonteresa ushergenecadherin23isexpressedinthezebrafishbrainandasubsetofretinalamacrinecells