Cargando…
Clustering of energy balance-related behaviors in 5-year-old children: Lifestyle patterns and their longitudinal association with weight status development in early childhood
BACKGROUND: This study identified lifestyle patterns by examining the clustering of eating routines (e.g. eating together as a family, having the television on during meals, duration of meals) and various activity-related behaviors (i.e. physical activity (PA) and sedentary screen-based behavior) in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441251/ https://www.ncbi.nlm.nih.gov/pubmed/22721567 http://dx.doi.org/10.1186/1479-5868-9-77 |
Sumario: | BACKGROUND: This study identified lifestyle patterns by examining the clustering of eating routines (e.g. eating together as a family, having the television on during meals, duration of meals) and various activity-related behaviors (i.e. physical activity (PA) and sedentary screen-based behavior) in 5-year-old children, as well as the longitudinal association of these patterns with weight status (BMI and overweight) development up to age 8. METHODS: Data originated from the KOALA Birth Cohort Study (N = 2074 at age 5). Principal component analysis (PCA) was used to identify lifestyle patterns. Backward regression analyses were used to examine the association of lifestyle patterns with parent and child background characteristics, as well as the longitudinal associations between the patterns and weight status development. RESULTS: Four lifestyle patterns emerged from the PCA: a ‘Television–Snacking’ pattern, a ‘Sports–Computer’ pattern, a ‘Traditional Family’ pattern, and a “Fast’ Food’ pattern. Child gender and parental educational level, working hours and body mass index were significantly associated with the scores for the patterns. The Television–Snacking pattern was positively associated with BMI (standardized regression coefficient β = 0.05; p < 0.05), and children with this pattern showed a positive tendency toward being overweight at age 8 (Odds ratio (OR) = 1.27, p = 0.06). In addition, the Sports–Computer pattern was significantly positively associated with an increased risk of becoming overweight at age 7 (OR = 1.28, p < 0.05). CONCLUSIONS: The current study showed the added value of including eating routines in cross-behavioral clustering analyses. The findings indicate that future interventions to prevent childhood overweight should address eating routines and activity/inactivity simultaneously, using the synergy between clustered behaviors (e.g. between television viewing and snacking). |
---|