Cargando…
A shortcut from GPCR signaling to Rac-mediated actin cytoskeleton through an ELMO/DOCK complex
Chemotaxis, chemoattractant-guided directional cell migration, plays major roles in human innate immunity and in development of a model organism Dictyostelium discoideum. Human leukocytes and D. disscoideum share remarkable similarities in the molecular mechanisms that control chemotaxis. These cell...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442806/ https://www.ncbi.nlm.nih.gov/pubmed/22647486 http://dx.doi.org/10.4161/sgtp.20271 |
Sumario: | Chemotaxis, chemoattractant-guided directional cell migration, plays major roles in human innate immunity and in development of a model organism Dictyostelium discoideum. Human leukocytes and D. disscoideum share remarkable similarities in the molecular mechanisms that control chemotaxis. These cells use G-Protein-Coupled Receptors (GPCRs), such as chemokine receptors, to control a signaling network that carries out chemotactic gradient sensing and directs cell migration. Diverse chemokines bind to their receptors to activate small G protein Rac through an evolutionarily conserved mechanism. Elmo and Dock180 proteins form ELMO/Dock180 complexes functioning as guanine nucleotide exchange factors (GEFs) for Rac activation. However, the linkage between GPCR to Elmo/Dock180 for Rac activation that controls F-actin dynamics remained unclear. Recently, we discovered a novel function of an ELMO protein in Dictyostelium discoideum linking GPCR signaling from Gβ to actin dynamics through regulating Rac activation during chemotaxis. |
---|