Cargando…

ROD1 Is a Seedless Target Gene of Hypoxia-Induced miR-210

Most metazoan microRNA (miRNA) target sites have perfect pairing to the “seed” sequence, a highly conserved region centering on miRNA nucleotides 2–7. Thus, complementarity to this region is a necessary requirement for target prediction algorithms. However, also non-canonical miRNA binding can confe...

Descripción completa

Detalles Bibliográficos
Autores principales: Fasanaro, Pasquale, Romani, Sveva, Voellenkle, Christine, Maimone, Biagina, Capogrossi, Maurizio C., Martelli, Fabio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443109/
https://www.ncbi.nlm.nih.gov/pubmed/23024754
http://dx.doi.org/10.1371/journal.pone.0044651
Descripción
Sumario:Most metazoan microRNA (miRNA) target sites have perfect pairing to the “seed” sequence, a highly conserved region centering on miRNA nucleotides 2–7. Thus, complementarity to this region is a necessary requirement for target prediction algorithms. However, also non-canonical miRNA binding can confer target regulation. Here, we identified a seedless target of miR-210, a master miRNA of the hypoxic response. We analyzed 20 genes that were inversely correlated to miR-210 expression and did not display any complementarity with miR-210 seed sequence. We validated ROD1 (Regulator of Differentiation 1, also named PTBP3, Polypyrimidine Tract Binding protein 3) as a miR-210 seedless transcript enriched in miR-210-containing RNA-induced silencing complexes. ROD1 was not indirectly targeted by a miR-210-induced miRNA. Conversely, we identified a “centered” miR-210 binding site in ROD1 involving 10 consecutive bases in the central portion of miR-210. Reporter assays showed that miR-210 inhibited ROD1 by the direct binding to this sequence, demonstrating that ROD1 is a bona fide seedless target of miR-210. As expected, both ROD1 mRNA and protein were down-modulated upon hypoxia in a miR-210 dependent manner. ROD1 targeting by miR-210 was biologically significant: the rescue of ROD1 inhibition significantly increased hypoxia-induced cell death. These data highlight the importance of ROD1 regulation by miR-210 for cell homeostasis.