Cargando…

Variation at Innate Immunity Toll-Like Receptor Genes in a Bottlenecked Population of a New Zealand Robin

Toll-like receptors (TLRs) are an ancient family of genes encoding transmembrane proteins that bind pathogen-specific molecules and initiate both innate and adaptive aspects of the immune response. Our goal was to determine whether these genes show sufficient genetic diversity in a bottlenecked popu...

Descripción completa

Detalles Bibliográficos
Autores principales: Grueber, Catherine E., Wallis, Graham P., King, Tania M., Jamieson, Ian G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443209/
https://www.ncbi.nlm.nih.gov/pubmed/23024782
http://dx.doi.org/10.1371/journal.pone.0045011
Descripción
Sumario:Toll-like receptors (TLRs) are an ancient family of genes encoding transmembrane proteins that bind pathogen-specific molecules and initiate both innate and adaptive aspects of the immune response. Our goal was to determine whether these genes show sufficient genetic diversity in a bottlenecked population to be a useful addition or alternative to the more commonly employed major histocompatibility complex (MHC) genotyping in a conservation genetics context. We amplified all known avian TLR genes in a severely bottlenecked population of New Zealand's Stewart Island robin (Petroica australis rakiura), for which reduced microsatellite diversity was previously observed. We genotyped 17–24 birds from a reintroduced island population (including the 12 founders) for nine genes, seven of which were polymorphic. We observed a total of 24 single-nucleotide polymorphisms overall, 15 of which were non-synonymous, representing up to five amino-acid variants at a locus. One locus (TLR1LB) showed evidence of past directional selection. Results also confirmed a passerine duplication of TLR7. The levels of TLR diversity that we observe are sufficient to justify their further use in addressing conservation genetic questions, even in bottlenecked populations.