Cargando…

DDR complex facilitates global association of RNA Polymerase V to promoters and evolutionarily young transposons

The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic subunit of Pol V. We found tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Xuehua, Hale, Christopher J., Law, Julie A., Johnson, Lianna M., Feng, Suhua, Tu, Andy, Jacobsen, Steven E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443314/
https://www.ncbi.nlm.nih.gov/pubmed/22864289
http://dx.doi.org/10.1038/nsmb.2354
Descripción
Sumario:The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic subunit of Pol V. We found that Pol V is enriched at promoters and evolutionarily recent transposons. This localization pattern is highly correlated with Pol V-dependent DNA methylation and small RNA accumulation. We also show that genome-wide chromatin association of Pol V is dependent on all members of a putative chromatin-remodeling complex termed DDR. Our study presents the first genome-wide view of Pol V occupancy and sheds light on the mechanistic basis of Pol V localization. Furthermore, these findings suggest a role for Pol V and RNA-directed DNA methylation in genome surveillance and in responding to genome evolution.