Cargando…

TOPLESS co-repressor interactions and their evolutionary conservation in plants

Large-scale protein-protein interaction studies recently demonstrated that the Arabidopsis TPL/TPR family of transcriptional co-repressors is involved in a broad range of developmental processes. TPL/TPRs predominantly interact with transcription factors that contain repression domain (RD) sequences...

Descripción completa

Detalles Bibliográficos
Autores principales: Causier, Barry, Lloyd, James, Stevens, Laura, Davies, Brendan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443911/
https://www.ncbi.nlm.nih.gov/pubmed/22476455
http://dx.doi.org/10.4161/psb.19283
Descripción
Sumario:Large-scale protein-protein interaction studies recently demonstrated that the Arabidopsis TPL/TPR family of transcriptional co-repressors is involved in a broad range of developmental processes. TPL/TPRs predominantly interact with transcription factors that contain repression domain (RD) sequences. Interestingly, RDs reported in the literature are quite diverse in sequence, yet TPL/TPRs interact with proteins containing all of the known motifs. These data lead us to conclude that the TPL/TPRs act as general repressors of gene transcription in plants. To investigate this further, we examined interactions between TPL/TPR proteins encoded by the moss Physcomitrella patens genome and components of the auxin signaling pathway. As in Arabidopsis, moss TPL proteins interact with AUX/IAA and ARF proteins, suggesting that they act in both forms of ARF-mediated transcriptional repression. These data suggest that the involvement of TPL in auxin signaling has been conserved across evolution, since mosses and angiosperms diverged approximately 450 million years ago.