Cargando…
Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements
A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-fre...
Autores principales: | Wang, Changyuan, Zhang, Jing, Mu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444083/ https://www.ncbi.nlm.nih.gov/pubmed/23012525 http://dx.doi.org/10.3390/s120708912 |
Ejemplares similares
-
Stepwise iterative maximum likelihood clustering approach
por: Sharma, Alok, et al.
Publicado: (2016) -
An EKF-Based Fixed-Point Iterative Filter for Nonlinear Systems
por: Feng, Xiaoliang, et al.
Publicado: (2019) -
Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement
por: Li, Haiyan, et al.
Publicado: (2017) -
Dynamic Indoor Localization Using Maximum Likelihood Particle Filtering
por: Wang, Wenxu, et al.
Publicado: (2021) -
Robust Huber-Based Iterated Divided Difference Filtering with Application to Cooperative Localization of Autonomous Underwater Vehicles
por: Gao, Wei, et al.
Publicado: (2014)