Cargando…
Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, le...
Autores principales: | de Marina, Héctor García, Espinosa, Felipe, Santos, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444117/ https://www.ncbi.nlm.nih.gov/pubmed/23012559 http://dx.doi.org/10.3390/s120709566 |
Ejemplares similares
-
Battery-SOC Estimation for Hybrid-Power UAVs Using Fast-OCV Curve with Unscented Kalman Filters
por: He, Zhuoyao, et al.
Publicado: (2023) -
Quaternion-Based Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
por: Chiella, Antônio C. B., et al.
Publicado: (2019) -
Unscented Kalman Filter for Brain-Machine Interfaces
por: Li, Zheng, et al.
Publicado: (2009) -
The Tobit-Unscented-Kalman-Filter-Based Attitude Estimation Algorithm Using the Star Sensor and Inertial Gyro Combination
por: Wang, Xinmei, et al.
Publicado: (2023) -
Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation
por: Jwo, Dah-Jing, et al.
Publicado: (2011)