Cargando…

Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum

The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Dambek, Michael, Eilers, Ulrike, Breitenbach, Jürgen, Steiger, Sabine, Büchel, Claudia, Sandmann, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444273/
https://www.ncbi.nlm.nih.gov/pubmed/22888128
http://dx.doi.org/10.1093/jxb/ers211
Descripción
Sumario:The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3′-HO group results in the formation of fucoxanthin.