Cargando…

MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status

The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and ep...

Descripción completa

Detalles Bibliográficos
Autores principales: Bady, Pierre, Sciuscio, Davide, Diserens, Annie-Claire, Bloch, Jocelyne, van den Bent, Martin J., Marosi, Christine, Dietrich, Pierre-Yves, Weller, Michael, Mariani, Luigi, Heppner, Frank L., Mcdonald, David R., Lacombe, Denis, Stupp, Roger, Delorenzi, Mauro, Hegi, Monika E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444709/
https://www.ncbi.nlm.nih.gov/pubmed/22810491
http://dx.doi.org/10.1007/s00401-012-1016-2
_version_ 1782243713321271296
author Bady, Pierre
Sciuscio, Davide
Diserens, Annie-Claire
Bloch, Jocelyne
van den Bent, Martin J.
Marosi, Christine
Dietrich, Pierre-Yves
Weller, Michael
Mariani, Luigi
Heppner, Frank L.
Mcdonald, David R.
Lacombe, Denis
Stupp, Roger
Delorenzi, Mauro
Hegi, Monika E.
author_facet Bady, Pierre
Sciuscio, Davide
Diserens, Annie-Claire
Bloch, Jocelyne
van den Bent, Martin J.
Marosi, Christine
Dietrich, Pierre-Yves
Weller, Michael
Mariani, Luigi
Heppner, Frank L.
Mcdonald, David R.
Lacombe, Denis
Stupp, Roger
Delorenzi, Mauro
Hegi, Monika E.
author_sort Bady, Pierre
collection PubMed
description The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-012-1016-2) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-3444709
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-34447092012-09-25 MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status Bady, Pierre Sciuscio, Davide Diserens, Annie-Claire Bloch, Jocelyne van den Bent, Martin J. Marosi, Christine Dietrich, Pierre-Yves Weller, Michael Mariani, Luigi Heppner, Frank L. Mcdonald, David R. Lacombe, Denis Stupp, Roger Delorenzi, Mauro Hegi, Monika E. Acta Neuropathol Original Paper The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-012-1016-2) contains supplementary material, which is available to authorized users. Springer-Verlag 2012-07-19 2012 /pmc/articles/PMC3444709/ /pubmed/22810491 http://dx.doi.org/10.1007/s00401-012-1016-2 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Paper
Bady, Pierre
Sciuscio, Davide
Diserens, Annie-Claire
Bloch, Jocelyne
van den Bent, Martin J.
Marosi, Christine
Dietrich, Pierre-Yves
Weller, Michael
Mariani, Luigi
Heppner, Frank L.
Mcdonald, David R.
Lacombe, Denis
Stupp, Roger
Delorenzi, Mauro
Hegi, Monika E.
MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title_full MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title_fullStr MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title_full_unstemmed MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title_short MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
title_sort mgmt methylation analysis of glioblastoma on the infinium methylation beadchip identifies two distinct cpg regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and cimp-status
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444709/
https://www.ncbi.nlm.nih.gov/pubmed/22810491
http://dx.doi.org/10.1007/s00401-012-1016-2
work_keys_str_mv AT badypierre mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT sciusciodavide mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT diserensannieclaire mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT blochjocelyne mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT vandenbentmartinj mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT marosichristine mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT dietrichpierreyves mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT wellermichael mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT marianiluigi mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT heppnerfrankl mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT mcdonalddavidr mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT lacombedenis mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT stupproger mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT delorenzimauro mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus
AT hegimonikae mgmtmethylationanalysisofglioblastomaontheinfiniummethylationbeadchipidentifiestwodistinctcpgregionsassociatedwithgenesilencingandoutcomeyieldingapredictionmodelforcomparisonsacrossdatasetstumorgradesandcimpstatus