Cargando…
An integer optimization algorithm for robust identification of non-linear gene regulatory networks
BACKGROUND: Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent...
Autores principales: | Chemmangattuvalappil, Nishanth, Task, Keith, Banerjee, Ipsita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444924/ https://www.ncbi.nlm.nih.gov/pubmed/22937832 http://dx.doi.org/10.1186/1752-0509-6-119 |
Ejemplares similares
-
Linear and integer optimization : theory and practice
por: Sierksma, Gerard, 1945-
Publicado: (2015) -
An integer linear programming approach for finding deregulated subgraphs in regulatory networks
por: Backes, Christina, et al.
Publicado: (2012) -
Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization
por: Guillén-Gosálbez, Gonzalo, et al.
Publicado: (2013) -
Linear and integer programming /
por: Zionts, Stanley -
Optimal training of integer-valued neural networks with mixed integer programming
por: Thorbjarnarson, Tómas, et al.
Publicado: (2023)