Cargando…

Audio-Visual Detection Benefits in the Rat

Human psychophysical studies have described multisensory perceptual benefits such as enhanced detection rates and faster reaction times in great detail. However, the neural circuits and mechanism underlying multisensory integration remain difficult to study in the primate brain. While rodents offer...

Descripción completa

Detalles Bibliográficos
Autores principales: Gleiss, Stephanie, Kayser, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445486/
https://www.ncbi.nlm.nih.gov/pubmed/23029179
http://dx.doi.org/10.1371/journal.pone.0045677
Descripción
Sumario:Human psychophysical studies have described multisensory perceptual benefits such as enhanced detection rates and faster reaction times in great detail. However, the neural circuits and mechanism underlying multisensory integration remain difficult to study in the primate brain. While rodents offer the advantage of a range of experimental methodologies to study the neural basis of multisensory processing, rodent studies are still limited due to the small number of available multisensory protocols. We here demonstrate the feasibility of an audio-visual stimulus detection task for rats, in which the animals detect lateralized uni- and multi-sensory stimuli in a two-response forced choice paradigm. We show that animals reliably learn and perform this task. Reaction times were significantly faster and behavioral performance levels higher in multisensory compared to unisensory conditions. This benefit was strongest for dim visual targets, in agreement with classical patterns of multisensory integration, and was specific to task-informative sounds, while uninformative sounds speeded reaction times with little costs for detection performance. Importantly, multisensory benefits for stimulus detection and reaction times appeared at different levels of task proficiency and training experience, suggesting distinct mechanisms inducing these two multisensory benefits. Our results demonstrate behavioral multisensory enhancement in rats in analogy to behavioral patterns known from other species, such as humans. In addition, our paradigm enriches the set of behavioral tasks on which future studies can rely, for example to combine behavioral measurements with imaging or pharmacological studies in the behaving animal or to study changes of integration properties in disease models.