Cargando…
Peptide Nanovesicles Formed by the Self-Assembly of Branched Amphiphilic Peptides
Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445502/ https://www.ncbi.nlm.nih.gov/pubmed/23028970 http://dx.doi.org/10.1371/journal.pone.0045374 |
Sumario: | Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. These peptides undergo supramolecular self-assembly and form solvent-filled, bilayer delimited spheres with 50–200 nm diameters as confirmed by TEM, STEM and DLS. Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these all-peptide structures are stabilized potentially by both hydrophobic interactions and hydrogen bonds and remain intact at low micromolar concentrations and higher temperatures. A linear peptide lacking the branch point showed no self-assembly properties. We have observed that these peptide vesicles can trap fluorescent dye molecules within their interior and are taken up by N/N 1003A rabbit lens epithelial cells grown in culture. These assemblies are thus potential drug delivery systems that can overcome some of the key limitations of the current packaging systems. |
---|