Cargando…

Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent Time-Frequency Features

This paper considers the problem of automatic characterization and detection of target images in a rapid serial visual presentation (RSVP) task based on EEG data. A novel method that aims to identify single-trial event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Jia, Meriño, Lenis Mauricio, Shamlo, Nima Bigdely, Makeig, Scott, Robbins, Kay, Huang, Yufei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445552/
https://www.ncbi.nlm.nih.gov/pubmed/23028544
http://dx.doi.org/10.1371/journal.pone.0044464
Descripción
Sumario:This paper considers the problem of automatic characterization and detection of target images in a rapid serial visual presentation (RSVP) task based on EEG data. A novel method that aims to identify single-trial event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier with feature clustering is developed to better utilize the correlated ERP features. The method is applied to EEG recordings of a RSVP experiment with multiple sessions and subjects. The results show that the target image events are mainly characterized by 3 distinct patterns in the time-frequency domain, i.e., a theta band (4.3 Hz) power boosting 300–700 ms after the target image onset, an alpha band (12 Hz) power boosting 500–1000 ms after the stimulus onset, and a delta band (2 Hz) power boosting after 500 ms. The most discriminant time-frequency features are power boosting and are relatively consistent among multiple sessions and subjects. Since the original discriminant time-frequency features are highly correlated, we constructed the uncorrelated features using hierarchical clustering for better classification of target and non-target images. With feature clustering, performance (area under ROC) improved from 0.85 to 0.89 on within-session tests, and from 0.76 to 0.84 on cross-subject tests. The constructed uncorrelated features were more robust than the original discriminant features and corresponded to a number of local regions on the time-frequency plane. Availability: The data and code are available at: http://compgenomics.cbi.utsa.edu/rsvp/index.html