Cargando…
Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings
We analyze simple dynamical network models which describe the limited capacity of nodes to process the input information. For a proper range of their parameters, the information flow pattern in these models is characterized by exponential distribution of the incoming information and a fat-tailed dis...
Autores principales: | Marinazzo, Daniele, Wu, Guorong, Pellicoro, Mario, Angelini, Leonardo, Stramaglia, Sebastiano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445562/ https://www.ncbi.nlm.nih.gov/pubmed/23028745 http://dx.doi.org/10.1371/journal.pone.0045026 |
Ejemplares similares
-
Information Transfer and Criticality in the Ising Model on the Human Connectome
por: Marinazzo, Daniele, et al.
Publicado: (2014) -
Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
por: Nuzzi, Davide, et al.
Publicado: (2020) -
Consensus clustering approach to group brain connectivity matrices
por: Rasero, Javier, et al.
Publicado: (2017) -
Causal Information Approach to Partial Conditioning in Multivariate Data Sets
por: Marinazzo, D., et al.
Publicado: (2012) -
Information transfer of an Ising model on a brain network
por: Marinazzo, D, et al.
Publicado: (2013)