Cargando…
Accuracy and Reliability of Automated Gray Matter Segmentation Pathways on Real and Simulated Structural Magnetic Resonance Images of the Human Brain
Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the brain, particularly when large sample sizes are investigated. However, although detection of small structural brain differences may fundamentally depend on the method used, both accura...
Autores principales: | Eggert, Lucas D., Sommer, Jens, Jansen, Andreas, Kircher, Tilo, Konrad, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445568/ https://www.ncbi.nlm.nih.gov/pubmed/23028771 http://dx.doi.org/10.1371/journal.pone.0045081 |
Ejemplares similares
-
Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability
por: Chu, Renxin, et al.
Publicado: (2017) -
Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder
por: Stratmann, Mirjam, et al.
Publicado: (2014) -
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
por: Brandt, David J., et al.
Publicado: (2013) -
Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington’s Disease
por: Johnson, Eileanoir B., et al.
Publicado: (2017) -
White Matter and Gray Matter Segmentation in 4D Computed Tomography
por: Manniesing, Rashindra, et al.
Publicado: (2017)