Cargando…
Adaptive behaviour of the spinal cord in the transition from quiet stance to walking
BACKGROUND: Modulation of nociceptive withdrawal reflex (NWR) excitability was evaluated during gait initiation in 10 healthy subjects to investigate how load- and movement-related joint inputs activate lower spinal centres in the transition from quiet stance to walking. A motion analysis system int...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445852/ https://www.ncbi.nlm.nih.gov/pubmed/22800397 http://dx.doi.org/10.1186/1471-2202-13-80 |
_version_ | 1782243873373814784 |
---|---|
author | Serrao, Mariano Ranavolo, Alberto Andersen, Ole Kæseler Conte, Carmela Don, Romildo Cortese, Francesca Mari, Silvia Draicchio, Francesco Padua, Luca Sandrini, Giorgio Pierelli, Francesco |
author_facet | Serrao, Mariano Ranavolo, Alberto Andersen, Ole Kæseler Conte, Carmela Don, Romildo Cortese, Francesca Mari, Silvia Draicchio, Francesco Padua, Luca Sandrini, Giorgio Pierelli, Francesco |
author_sort | Serrao, Mariano |
collection | PubMed |
description | BACKGROUND: Modulation of nociceptive withdrawal reflex (NWR) excitability was evaluated during gait initiation in 10 healthy subjects to investigate how load- and movement-related joint inputs activate lower spinal centres in the transition from quiet stance to walking. A motion analysis system integrated with a surface EMG device was used to acquire kinematic, kinetic and EMG variables. Starting from a quiet stance, subjects were asked to walk forward, at their natural speed. The sural nerve was stimulated and EMG responses were recorded from major hip, knee and ankle muscles. Gait initiation was divided into four subphases based on centre of pressure and centre of mass behaviours, while joint displacements were used to categorise joint motion as flexion or extension. The reflex parameters were measured and compared between subphases and in relation to the joint kinematics. RESULTS: The NWR was found to be subphase-dependent. NWR excitability was increased in the hip and knee flexor muscles of the starting leg, just prior to the occurrence of any movement, and in the knee flexor muscles of the same leg as soon as it was unloaded. The NWR was hip joint kinematics-dependent in a crossed manner. The excitability of the reflex was enhanced in the extensor muscles of the standing leg during the hip flexion of the starting leg, and in the hip flexors of the standing leg during the hip extension of the starting leg. No notable reflex modulation was observed in the ankle muscles. CONCLUSIONS: Our findings show that the NWR is modulated during the gait initiation phase. Leg unloading and hip joint motion are the main sources of the observed modulation and work in concert to prepare and assist the starting leg in the first step while supporting the contralateral leg, thereby possibly predisposing the lower limbs to the cyclical pattern of walking. |
format | Online Article Text |
id | pubmed-3445852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34458522012-09-21 Adaptive behaviour of the spinal cord in the transition from quiet stance to walking Serrao, Mariano Ranavolo, Alberto Andersen, Ole Kæseler Conte, Carmela Don, Romildo Cortese, Francesca Mari, Silvia Draicchio, Francesco Padua, Luca Sandrini, Giorgio Pierelli, Francesco BMC Neurosci Research Article BACKGROUND: Modulation of nociceptive withdrawal reflex (NWR) excitability was evaluated during gait initiation in 10 healthy subjects to investigate how load- and movement-related joint inputs activate lower spinal centres in the transition from quiet stance to walking. A motion analysis system integrated with a surface EMG device was used to acquire kinematic, kinetic and EMG variables. Starting from a quiet stance, subjects were asked to walk forward, at their natural speed. The sural nerve was stimulated and EMG responses were recorded from major hip, knee and ankle muscles. Gait initiation was divided into four subphases based on centre of pressure and centre of mass behaviours, while joint displacements were used to categorise joint motion as flexion or extension. The reflex parameters were measured and compared between subphases and in relation to the joint kinematics. RESULTS: The NWR was found to be subphase-dependent. NWR excitability was increased in the hip and knee flexor muscles of the starting leg, just prior to the occurrence of any movement, and in the knee flexor muscles of the same leg as soon as it was unloaded. The NWR was hip joint kinematics-dependent in a crossed manner. The excitability of the reflex was enhanced in the extensor muscles of the standing leg during the hip flexion of the starting leg, and in the hip flexors of the standing leg during the hip extension of the starting leg. No notable reflex modulation was observed in the ankle muscles. CONCLUSIONS: Our findings show that the NWR is modulated during the gait initiation phase. Leg unloading and hip joint motion are the main sources of the observed modulation and work in concert to prepare and assist the starting leg in the first step while supporting the contralateral leg, thereby possibly predisposing the lower limbs to the cyclical pattern of walking. BioMed Central 2012-07-16 /pmc/articles/PMC3445852/ /pubmed/22800397 http://dx.doi.org/10.1186/1471-2202-13-80 Text en Copyright ©2012 Serrao et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Serrao, Mariano Ranavolo, Alberto Andersen, Ole Kæseler Conte, Carmela Don, Romildo Cortese, Francesca Mari, Silvia Draicchio, Francesco Padua, Luca Sandrini, Giorgio Pierelli, Francesco Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title | Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title_full | Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title_fullStr | Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title_full_unstemmed | Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title_short | Adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
title_sort | adaptive behaviour of the spinal cord in the transition from quiet stance to walking |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445852/ https://www.ncbi.nlm.nih.gov/pubmed/22800397 http://dx.doi.org/10.1186/1471-2202-13-80 |
work_keys_str_mv | AT serraomariano adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT ranavoloalberto adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT andersenolekæseler adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT contecarmela adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT donromildo adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT cortesefrancesca adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT marisilvia adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT draicchiofrancesco adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT padualuca adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT sandrinigiorgio adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking AT pierellifrancesco adaptivebehaviourofthespinalcordinthetransitionfromquietstancetowalking |