Cargando…

Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development

INTRODUCTION: Experimental and clinical evidence points to a critical role of progesterone and the nuclear progesterone receptor (PR) in controlling mammary gland tumorigenesis. However, the molecular mechanisms of progesterone action in breast cancer still remain elusive. On the other hand, micro R...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivas, Martin A, Venturutti, Leandro, Huang, Yi-Wen, Schillaci, Roxana, Huang, Tim Hui-Ming, Elizalde, Patricia V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446340/
https://www.ncbi.nlm.nih.gov/pubmed/22583478
http://dx.doi.org/10.1186/bcr3187
_version_ 1782243951720267776
author Rivas, Martin A
Venturutti, Leandro
Huang, Yi-Wen
Schillaci, Roxana
Huang, Tim Hui-Ming
Elizalde, Patricia V
author_facet Rivas, Martin A
Venturutti, Leandro
Huang, Yi-Wen
Schillaci, Roxana
Huang, Tim Hui-Ming
Elizalde, Patricia V
author_sort Rivas, Martin A
collection PubMed
description INTRODUCTION: Experimental and clinical evidence points to a critical role of progesterone and the nuclear progesterone receptor (PR) in controlling mammary gland tumorigenesis. However, the molecular mechanisms of progesterone action in breast cancer still remain elusive. On the other hand, micro RNAs (miRNAs) are short ribonucleic acids which have also been found to play a pivotal role in cancer pathogenesis. The role of miRNA in progestin-induced breast cancer is poorly explored. In this study we explored progestin modulation of miRNA expression in mammary tumorigenesis. METHODS: We performed a genome-wide study to explore progestin-mediated regulation of miRNA expression in breast cancer. miR-16 expression was studied by RT-qPCR in cancer cell lines with silenced PR, signal transducer and activator of transcription 3 (Stat3) or c-Myc, treated or not with progestins. Breast cancer cells were transfected with the precursor of miR-16 and proliferation assays, Western blots or in vivo experiments were performed. Target genes of miR-16 were searched through a bioinformatical approach, and the study was focused on cyclin E. Reporter gene assays were performed to confirm that cyclin E 3'UTR is a direct target of miR-16. RESULTS: We found that nine miRNAs were upregulated and seven were downregulated by progestin in mammary tumor cells. miR-16, whose function as a tumor suppressor in leukemia has already been shown, was identified as one of the downregulated miRNAs in murine and human breast cancer cells. Progestin induced a decrease in miR-16 levels via the classical PR and through a hierarchical interplay between Stat3 and the oncogenic transcription factor c-Myc. A search for miR-16 targets showed that the CCNE1 gene, encoding the cell cycle regulator cyclin E, contains conserved putative miR-16 target sites in its mRNA 3' UTR region. We found that, similar to the molecular mechanism underlying progestin-modulated miR-16 expression, Stat3 and c-Myc participated in the induction of cyclin E expression by progestin. Moreover, overexpression of miR-16 abrogated the ability of progestin to induce cyclin E upregulation, revealing that cyclin E is a novel target of miR-16 in breast cancer. Overexpression of miR-16 also inhibited progestin-induced breast tumor growth in vitro and in vivo, demonstrating for the first time, a role for miR-16 as a tumor suppressor in mammary tumorigenesis. We also found that the ErbB ligand heregulin (HRG) downregulated the expression of miR-16, which then participates in the proliferative activity of HRG in breast tumor cells. CONCLUSIONS: In this study, we reveal the first progestin-regulated miRNA expression profile and identify a novel role for miR-16 as a tumor suppressor in progestin- and growth factor-induced growth in breast cancer.
format Online
Article
Text
id pubmed-3446340
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34463402012-09-20 Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development Rivas, Martin A Venturutti, Leandro Huang, Yi-Wen Schillaci, Roxana Huang, Tim Hui-Ming Elizalde, Patricia V Breast Cancer Res Research Article INTRODUCTION: Experimental and clinical evidence points to a critical role of progesterone and the nuclear progesterone receptor (PR) in controlling mammary gland tumorigenesis. However, the molecular mechanisms of progesterone action in breast cancer still remain elusive. On the other hand, micro RNAs (miRNAs) are short ribonucleic acids which have also been found to play a pivotal role in cancer pathogenesis. The role of miRNA in progestin-induced breast cancer is poorly explored. In this study we explored progestin modulation of miRNA expression in mammary tumorigenesis. METHODS: We performed a genome-wide study to explore progestin-mediated regulation of miRNA expression in breast cancer. miR-16 expression was studied by RT-qPCR in cancer cell lines with silenced PR, signal transducer and activator of transcription 3 (Stat3) or c-Myc, treated or not with progestins. Breast cancer cells were transfected with the precursor of miR-16 and proliferation assays, Western blots or in vivo experiments were performed. Target genes of miR-16 were searched through a bioinformatical approach, and the study was focused on cyclin E. Reporter gene assays were performed to confirm that cyclin E 3'UTR is a direct target of miR-16. RESULTS: We found that nine miRNAs were upregulated and seven were downregulated by progestin in mammary tumor cells. miR-16, whose function as a tumor suppressor in leukemia has already been shown, was identified as one of the downregulated miRNAs in murine and human breast cancer cells. Progestin induced a decrease in miR-16 levels via the classical PR and through a hierarchical interplay between Stat3 and the oncogenic transcription factor c-Myc. A search for miR-16 targets showed that the CCNE1 gene, encoding the cell cycle regulator cyclin E, contains conserved putative miR-16 target sites in its mRNA 3' UTR region. We found that, similar to the molecular mechanism underlying progestin-modulated miR-16 expression, Stat3 and c-Myc participated in the induction of cyclin E expression by progestin. Moreover, overexpression of miR-16 abrogated the ability of progestin to induce cyclin E upregulation, revealing that cyclin E is a novel target of miR-16 in breast cancer. Overexpression of miR-16 also inhibited progestin-induced breast tumor growth in vitro and in vivo, demonstrating for the first time, a role for miR-16 as a tumor suppressor in mammary tumorigenesis. We also found that the ErbB ligand heregulin (HRG) downregulated the expression of miR-16, which then participates in the proliferative activity of HRG in breast tumor cells. CONCLUSIONS: In this study, we reveal the first progestin-regulated miRNA expression profile and identify a novel role for miR-16 as a tumor suppressor in progestin- and growth factor-induced growth in breast cancer. BioMed Central 2012 2012-05-14 /pmc/articles/PMC3446340/ /pubmed/22583478 http://dx.doi.org/10.1186/bcr3187 Text en Copyright ©2012 Rivas et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Rivas, Martin A
Venturutti, Leandro
Huang, Yi-Wen
Schillaci, Roxana
Huang, Tim Hui-Ming
Elizalde, Patricia V
Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title_full Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title_fullStr Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title_full_unstemmed Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title_short Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
title_sort downregulation of the tumor-suppressor mir-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446340/
https://www.ncbi.nlm.nih.gov/pubmed/22583478
http://dx.doi.org/10.1186/bcr3187
work_keys_str_mv AT rivasmartina downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment
AT venturuttileandro downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment
AT huangyiwen downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment
AT schillaciroxana downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment
AT huangtimhuiming downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment
AT elizaldepatriciav downregulationofthetumorsuppressormir16viaprogestinmediatedoncogenicsignalingcontributestobreastcancerdevelopment