Cargando…

In vitro and in vivo studies of surface-structured implants for bone formation

BACKGROUND AND METHODS: Micronanoscale topologies play an important role in implant osteointegration and determine the success of an implant. We investigated the effect of three different implant surface topologies on osteoblast response and bone regeneration. In this study, implants with nanotubes...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Lu, Feng, Bo, Wang, Peizhi, Ding, Siyang, Liu, Zhiyuan, Zhou, Jie, Yu, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446836/
https://www.ncbi.nlm.nih.gov/pubmed/23028216
http://dx.doi.org/10.2147/IJN.S29496
Descripción
Sumario:BACKGROUND AND METHODS: Micronanoscale topologies play an important role in implant osteointegration and determine the success of an implant. We investigated the effect of three different implant surface topologies on osteoblast response and bone regeneration. In this study, implants with nanotubes and micropores were used, and implants with flat surfaces were used as the control group. RESULTS: Our in vitro studies showed that the nanostructured topologies improved the proliferation, differentiation, and development of the osteoblastic phenotype. Histological analysis further revealed that the nanotopology increased cell aggregation at the implant-tissue interfaces and enhanced bone-forming ability. Pushout testing indicated that the nanostructured topology greatly increased the bone-implant interfacial strength within 4 weeks of implantation. CONCLUSION: Nanotopography may improve regeneration of bone tissue and shows promise for dental implant applications.