Cargando…

CONCERN: Does ovary need D-chiro-inositol?

BACKGROUD: Polycystic Ovary Syndrome (PCOS) is a multifactorial pathology that affects 10% of the women in reproductive age being the main cause of infertility due to menstrual dysfunction. Since 1980, it is known that PCOS is associated with insulin resistance (IR). The recognition of this associat...

Descripción completa

Detalles Bibliográficos
Autores principales: Isabella, Rosalbino, Raffone, Emanuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447676/
https://www.ncbi.nlm.nih.gov/pubmed/22587479
http://dx.doi.org/10.1186/1757-2215-5-14
Descripción
Sumario:BACKGROUD: Polycystic Ovary Syndrome (PCOS) is a multifactorial pathology that affects 10% of the women in reproductive age being the main cause of infertility due to menstrual dysfunction. Since 1980, it is known that PCOS is associated with insulin resistance (IR). The recognition of this association has prompted extensive investigation on the relationship between insulin and gonadal function, and has turned insulin sensitizer agent as the main therapeutic choice. In particular two different polyalcohol myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. In particular, while data on myo-inositol and restored ovulation were consistent, data on D-chiro-inositol were not . Recently, a comparative study, proposed a D-chiro-inositol paradox in the ovary of PCOS patients hypothesizing that only myo-inositol has a specific ovarian action. In the present study we aim to further study the role played by D-chiro-inositol at ovarian level. METHODS: A total of 54 women, aged <40 years and diagnosed with PCOS were enrolled in this study. Patients with insulin resistance and/or hyperglycaemia were excluded from the study. Patients were randomly divided into 5 groups (n=10-12): a placebo group, and 4 groups (A-D) that received 300-600-1200-2400 mg of DCI daily respectively. All treatments were carried out for 8 weeks before follicle stimulating hormone (rFSH) administration. RESULTS: Total r-FSH units increased significantly in the two groups that received the higher doses of DCI. The number of immature oocytes was significantly increased in the three groups that received the higher doses of DCI. Concurrently, the number of MII oocytes was significantly lower in the D group compared to placebo group. Noteworthy, the number of grade I embryos was significantly reduced by DCI supplementation. CONCLUSIONS: Indeed, increasing DCI dosage progressively worsens oocyte quality and ovarian response. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1757-2215-5-14) contains supplementary material, which is available to authorized users.