Cargando…

High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance

Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity is associated with insulin resistance (IR). Endurance-trained athletes, characterized by a high oxidative capacity, have elevated intramyocellular lipids, yet are highly insulin sensitive. We tested the hypothesis...

Descripción completa

Detalles Bibliográficos
Autores principales: Phielix, Esther, Meex, Ruth, Ouwens, D. Margriet, Sparks, Lauren, Hoeks, Joris, Schaart, Gert, Moonen-Kornips, Esther, Hesselink, Matthijs K.C., Schrauwen, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447923/
https://www.ncbi.nlm.nih.gov/pubmed/22787138
http://dx.doi.org/10.2337/db11-1832
Descripción
Sumario:Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity is associated with insulin resistance (IR). Endurance-trained athletes, characterized by a high oxidative capacity, have elevated intramyocellular lipids, yet are highly insulin sensitive. We tested the hypothesis that a high oxidative capacity could attenuate lipid-induced IR. Nine endurance-trained (age = 23.4 ± 0.9 years; BMI = 21.2 ± 0.6 kg/m(2)) and 10 untrained subjects (age = 21.9 ± 0.9 years; BMI = 22.8 ± 0.6 kg/m(2)) were included and underwent a clamp with either infusion of glycerol or intralipid. Muscle biopsies were taken to perform high-resolution respirometry and protein phosphorylation/expression. Trained subjects had ∼32% higher mitochondrial capacity and ∼22% higher insulin sensitivity (P < 0.05 for both). Lipid infusion reduced insulin-stimulated glucose uptake by 63% in untrained subjects (P < 0.05), whereas this effect was blunted in trained subjects (29%, P < 0.05). In untrained subjects, lipid infusion reduced oxidative and nonoxidative glucose disposal (NOGD), whereas trained subjects were completely protected against lipid-induced reduction in NOGD, supported by dephosphorylation of glycogen synthase. We conclude that chronic exercise training attenuates lipid-induced IR and specifically attenuates the lipid-induced reduction in NOGD. Signaling data support the notion that high glucose uptake in trained subjects is maintained by shuttling glucose toward storage as glycogen.