Cargando…

Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex

Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying processes at the synapses are not fully understood, there is strong evidence that a process of random, independent formation and pruning of excitatory synapses can be ruled out. Ins...

Descripción completa

Detalles Bibliográficos
Autores principales: Deger, Moritz, Helias, Moritz, Rotter, Stefan, Diesmann, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447982/
https://www.ncbi.nlm.nih.gov/pubmed/23028287
http://dx.doi.org/10.1371/journal.pcbi.1002689
Descripción
Sumario:Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying processes at the synapses are not fully understood, there is strong evidence that a process of random, independent formation and pruning of excitatory synapses can be ruled out. Instead, there must be some cooperation between the synaptic contacts connecting a single pre- and postsynaptic neuron pair. So far, the mechanism of cooperation is not known. Here we demonstrate that local correlation detection at the postsynaptic dendritic spine suffices to explain the synaptic cooperation effect, without assuming any hypothetical direct interaction pathway between the synaptic contacts. Candidate biomolecular mechanisms for dendritic correlation detection have been identified previously, as well as for structural plasticity based thereon. By analyzing and fitting of a simple model, we show that spike-timing correlation dependent structural plasticity, without additional mechanisms of cross-synapse interaction, can reproduce the experimentally observed distributions of numbers of synaptic contacts between pairs of neurons in the neocortex. Furthermore, the model yields a first explanation for the existence of both transient and persistent dendritic spines and allows to make predictions for future experiments.