Cargando…
Significance Analysis of Microarrays (SAM) Offers Clues to Differences Between the Genomes of Adult Philadelphia Positive ALL and the Lymphoid Blast Transformation of CML
Philadelphia positive malignant disorders are a clinically divergent group of leukemias. These include chronic myeloid leukemia (CML) and de novo acute Philadelphia positive (Ph(+)) leukemia of both myeloid, and lymphoid origin. Recent whole genome screening of Ph(+)ALL in both children and adults i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448499/ https://www.ncbi.nlm.nih.gov/pubmed/23071388 http://dx.doi.org/10.4137/CIN.S9258 |
Sumario: | Philadelphia positive malignant disorders are a clinically divergent group of leukemias. These include chronic myeloid leukemia (CML) and de novo acute Philadelphia positive (Ph(+)) leukemia of both myeloid, and lymphoid origin. Recent whole genome screening of Ph(+)ALL in both children and adults identified an almost obligatory cryptic loss of Ikaros, required for the normal B cell maturation. Although similar losses were found in lymphoid blast crisis the genetic background of the transformation in CML is still poorly defined. We used Significance Analysis of Microarrays (SAM) to analyze comparative genomic hybridization (aCGH) data from 30 CML (10 each of chronic phase, myeloid and lymphoid blast stage), 10 Ph(+)ALL adult patients and 10 disease free controls and were able to: (a) discriminate between the genomes of lymphoid and myeloid blast cells and (b) identify differences in the genome profile of de novo Ph(+)ALL and lymphoid blast transformation of CML (BC/L). Furthermore we were able to distinguish a sub group of Ph(+) ALL characterized by gains in chromosome 9 and recurrent losses at several other genome sites offering genetic evidence for the clinical heterogeneity. The significance of these results is that they not only offer clues regarding the pathogenesis of Ph(+) disorders and highlight the potential clinical implications of a set of probes but also demonstrates what SAM can offer for the analysis of genome data. |
---|