Cargando…

Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes

CXCL8, one of the first chemokines found in the brain, is upregulated in the brains and cerebrospinal fluid of HIV-1 infected individuals suggesting its potential role in human immune deficiency virus (HIV)-associated neuroinflammation. Astrocytes are known to be the major contributors to the CXCL8...

Descripción completa

Detalles Bibliográficos
Autores principales: Mamik, Manmeet K., Ghorpade, Anuja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448633/
https://www.ncbi.nlm.nih.gov/pubmed/23029125
http://dx.doi.org/10.1371/journal.pone.0045596
_version_ 1782244275307675648
author Mamik, Manmeet K.
Ghorpade, Anuja
author_facet Mamik, Manmeet K.
Ghorpade, Anuja
author_sort Mamik, Manmeet K.
collection PubMed
description CXCL8, one of the first chemokines found in the brain, is upregulated in the brains and cerebrospinal fluid of HIV-1 infected individuals suggesting its potential role in human immune deficiency virus (HIV)-associated neuroinflammation. Astrocytes are known to be the major contributors to the CXCL8 pool. Interleukin (IL)-1β activated astrocytes exhibit significant upregulation of CXCL8. In order to determine the signaling pathways involved in CXCL8 regulation in astrocytes, we employed pharmacological inhibitors for non-receptor Src homology-2 domain-containing protein tyrosine phosphatase (SHP) 2 and mitogen-activated protein kinases (MAPK) pathway and observed reduced expression of CXCL8 following IL-1β stimulation. Overexpression of SHP2 and p38 enzymes in astrocytes led to elevated CXCL8 expression; however, inactivating SHP2 and p38 with dominant negative mutants abrogated CXCL8 induction. Furthermore, SHP2 overexpression resulted in higher SHP2 and p38 enzyme activity whereas p38 overexpression resulted in higher p38 but not SHP2 enzyme activity. Phosphorylation of SHP2 was important for phosphorylation of p38, which in turn was critical for phosphorylation of extracellular signal regulated kinase (ERK). Thus, our findings suggest an important role for SHP2 in CXCL8 expression in astrocytes during inflammation, as SHP2, directly or indirectly, modulates p38 and ERK MAPK in the signaling cascade leading to CXCL8 production. This study provides detailed understanding of the mechanisms involved in CXCL8 production during neuroinflammation.
format Online
Article
Text
id pubmed-3448633
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34486332012-10-01 Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes Mamik, Manmeet K. Ghorpade, Anuja PLoS One Research Article CXCL8, one of the first chemokines found in the brain, is upregulated in the brains and cerebrospinal fluid of HIV-1 infected individuals suggesting its potential role in human immune deficiency virus (HIV)-associated neuroinflammation. Astrocytes are known to be the major contributors to the CXCL8 pool. Interleukin (IL)-1β activated astrocytes exhibit significant upregulation of CXCL8. In order to determine the signaling pathways involved in CXCL8 regulation in astrocytes, we employed pharmacological inhibitors for non-receptor Src homology-2 domain-containing protein tyrosine phosphatase (SHP) 2 and mitogen-activated protein kinases (MAPK) pathway and observed reduced expression of CXCL8 following IL-1β stimulation. Overexpression of SHP2 and p38 enzymes in astrocytes led to elevated CXCL8 expression; however, inactivating SHP2 and p38 with dominant negative mutants abrogated CXCL8 induction. Furthermore, SHP2 overexpression resulted in higher SHP2 and p38 enzyme activity whereas p38 overexpression resulted in higher p38 but not SHP2 enzyme activity. Phosphorylation of SHP2 was important for phosphorylation of p38, which in turn was critical for phosphorylation of extracellular signal regulated kinase (ERK). Thus, our findings suggest an important role for SHP2 in CXCL8 expression in astrocytes during inflammation, as SHP2, directly or indirectly, modulates p38 and ERK MAPK in the signaling cascade leading to CXCL8 production. This study provides detailed understanding of the mechanisms involved in CXCL8 production during neuroinflammation. Public Library of Science 2012-09-21 /pmc/articles/PMC3448633/ /pubmed/23029125 http://dx.doi.org/10.1371/journal.pone.0045596 Text en © 2012 Mamik, Ghorpade http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Mamik, Manmeet K.
Ghorpade, Anuja
Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title_full Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title_fullStr Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title_full_unstemmed Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title_short Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase (SHP) 2 and p38 Regulate the Expression of Chemokine CXCL8 in Human Astrocytes
title_sort src homology-2 domain-containing protein tyrosine phosphatase (shp) 2 and p38 regulate the expression of chemokine cxcl8 in human astrocytes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448633/
https://www.ncbi.nlm.nih.gov/pubmed/23029125
http://dx.doi.org/10.1371/journal.pone.0045596
work_keys_str_mv AT mamikmanmeetk srchomology2domaincontainingproteintyrosinephosphataseshp2andp38regulatetheexpressionofchemokinecxcl8inhumanastrocytes
AT ghorpadeanuja srchomology2domaincontainingproteintyrosinephosphataseshp2andp38regulatetheexpressionofchemokinecxcl8inhumanastrocytes