Cargando…

Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice

BACKGROUND: Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, geno...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapell, Dagmar NRG, Sorensen, Daniel, Su, Guosheng, Janss, Luc LG, Ashworth, Cheryl J, Roehe, Rainer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453524/
https://www.ncbi.nlm.nih.gov/pubmed/22651804
http://dx.doi.org/10.1186/1471-2156-13-42
_version_ 1782244476370026496
author Kapell, Dagmar NRG
Sorensen, Daniel
Su, Guosheng
Janss, Luc LG
Ashworth, Cheryl J
Roehe, Rainer
author_facet Kapell, Dagmar NRG
Sorensen, Daniel
Su, Guosheng
Janss, Luc LG
Ashworth, Cheryl J
Roehe, Rainer
author_sort Kapell, Dagmar NRG
collection PubMed
description BACKGROUND: Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, genomic and combined polygenic-genomic models, including mixture models (labelled according to the percentage of genotyped SNP markers considered to have a substantial effect, ranging from 2.5% to 100%). The data consisted of phenotypes and SNP genotypes (10,946 SNPs) of 2,188 mice. Various growth, behavioural and physiological traits were selected for the analysis to reflect a wide range of heritabilities (0.10 to 0.74) and numbers of detected quantitative traits loci (QTL) (1 to 20) affecting those traits. The analysis included estimation of variance components and cross-validation within and between families. RESULTS: Genomic selection showed a high predictive ability (PA) in comparison to traditional polygenic selection, especially for traits of moderate heritability and when cross-validation was between families. This occurred although the proportion of genomic variance of traits using genomic models was 22 to 33% smaller than using polygenic models. Using a 2.5% mixture genomic model, the proportion of genomic variance was 79% smaller relative to the polygenic model. Although the proportion of variance explained by the markers was reduced further when a smaller number of SNPs was assumed to have a substantial effect on the trait, PA of genomic selection for most traits was little affected. These low mixture percentages resulted in improved estimates of single SNP effects. Genomic models implemented for traits with fewer QTLs showed even lower PA than the polygenic models. CONCLUSIONS: Genomic selection generally performed better than traditional polygenic selection, especially in the context of between family cross-validation. Reducing the number of markers considered to affect the trait did not significantly change PA for most traits, particularly in the case of within family cross-validation, but increased the number of markers found to be associated with QTLs. The underlying number of QTLs affecting the trait has an effect on PA, with a smaller number of QTLs resulting in lower PA using the genomic model compared to the polygenic model.
format Online
Article
Text
id pubmed-3453524
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34535242012-09-25 Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice Kapell, Dagmar NRG Sorensen, Daniel Su, Guosheng Janss, Luc LG Ashworth, Cheryl J Roehe, Rainer BMC Genet Research Article BACKGROUND: Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, genomic and combined polygenic-genomic models, including mixture models (labelled according to the percentage of genotyped SNP markers considered to have a substantial effect, ranging from 2.5% to 100%). The data consisted of phenotypes and SNP genotypes (10,946 SNPs) of 2,188 mice. Various growth, behavioural and physiological traits were selected for the analysis to reflect a wide range of heritabilities (0.10 to 0.74) and numbers of detected quantitative traits loci (QTL) (1 to 20) affecting those traits. The analysis included estimation of variance components and cross-validation within and between families. RESULTS: Genomic selection showed a high predictive ability (PA) in comparison to traditional polygenic selection, especially for traits of moderate heritability and when cross-validation was between families. This occurred although the proportion of genomic variance of traits using genomic models was 22 to 33% smaller than using polygenic models. Using a 2.5% mixture genomic model, the proportion of genomic variance was 79% smaller relative to the polygenic model. Although the proportion of variance explained by the markers was reduced further when a smaller number of SNPs was assumed to have a substantial effect on the trait, PA of genomic selection for most traits was little affected. These low mixture percentages resulted in improved estimates of single SNP effects. Genomic models implemented for traits with fewer QTLs showed even lower PA than the polygenic models. CONCLUSIONS: Genomic selection generally performed better than traditional polygenic selection, especially in the context of between family cross-validation. Reducing the number of markers considered to affect the trait did not significantly change PA for most traits, particularly in the case of within family cross-validation, but increased the number of markers found to be associated with QTLs. The underlying number of QTLs affecting the trait has an effect on PA, with a smaller number of QTLs resulting in lower PA using the genomic model compared to the polygenic model. BioMed Central 2012-05-31 /pmc/articles/PMC3453524/ /pubmed/22651804 http://dx.doi.org/10.1186/1471-2156-13-42 Text en Copyright ©2012 Kapell et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kapell, Dagmar NRG
Sorensen, Daniel
Su, Guosheng
Janss, Luc LG
Ashworth, Cheryl J
Roehe, Rainer
Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title_full Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title_fullStr Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title_full_unstemmed Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title_short Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
title_sort efficiency of genomic selection using bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453524/
https://www.ncbi.nlm.nih.gov/pubmed/22651804
http://dx.doi.org/10.1186/1471-2156-13-42
work_keys_str_mv AT kapelldagmarnrg efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice
AT sorensendaniel efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice
AT suguosheng efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice
AT janssluclg efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice
AT ashworthcherylj efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice
AT roeherainer efficiencyofgenomicselectionusingbayesianmultimarkermodelsfortraitsselectedtoreflectawiderangeofheritabilitiesandfrequenciesofdetectedquantitativetraitslociinmice